Abstract

A novel formation method of a long-period fiber grating (LPFG) based on a magnetic-force-induced microbend is proposed and experimentally demonstrated. The LPFG employs a permanent magnet that exerts transversal force to the fiber by attracting a steel coil spring. The transversal force causes periodic microbending to the fiber, and therefore the transmission wave attenuates at the core-to-cladding mode resonance. This device has advantages of ease of fabrication, reconfigurability, and available for any type of fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [Crossref]
  2. V. Bhatia, Opt. Express 4, 457 (1999).
    [Crossref]
  3. C. E. Chryssou, Opt. Commun. 184, 375 (2000).
    [Crossref]
  4. H. Sakata, M. Ichikawa, and H. Nakagami, Appl. Opt. 50, 291 (2011).
    [Crossref]
  5. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, Opt. Lett. 24, 646 (1999).
    [Crossref]
  6. I. K. Hwang, S. H. Yun, and B. Y. Kim, Opt. Lett. 24, 1263 (1999).
    [Crossref]
  7. J. N. Blake, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 177 (1986).
    [Crossref]
  8. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, Opt. Lett. 25, 710 (2000).
    [Crossref]
  9. E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
    [Crossref]
  10. K. R. Sohn and G.-D. Peng, Opt. Commun. 278, 77 (2007).
    [Crossref]
  11. D. Marcuse, Appl. Opt. 23, 1082 (1984).
    [Crossref]
  12. F. Heismann and R. C. Aferness, IEEE J. Quantum Electron. 24, 83 (1988).
    [Crossref]
  13. L. H. de Medeiros, G. Reyne, and G. Meunier, IEEE Trans. Magn. 35, 1215 (1999).
    [Crossref]
  14. J. F. Shackelford, W. Alexander, and J. S. Park, eds., Materials Science and Engineering Handbook,2nd ed. (CRC Press, 1994), p. 302.

2011 (1)

2007 (1)

K. R. Sohn and G.-D. Peng, Opt. Commun. 278, 77 (2007).
[Crossref]

2005 (1)

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

2000 (2)

1999 (4)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

1988 (1)

F. Heismann and R. C. Aferness, IEEE J. Quantum Electron. 24, 83 (1988).
[Crossref]

1986 (1)

1984 (1)

Aferness, R. C.

F. Heismann and R. C. Aferness, IEEE J. Quantum Electron. 24, 83 (1988).
[Crossref]

Alhassen, F.

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

Bhatia, V.

V. Bhatia, Opt. Express 4, 457 (1999).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Blake, J. N.

Chryssou, C. E.

C. E. Chryssou, Opt. Commun. 184, 375 (2000).
[Crossref]

de Medeiros, L. H.

L. H. de Medeiros, G. Reyne, and G. Meunier, IEEE Trans. Magn. 35, 1215 (1999).
[Crossref]

Digonnet, M. J. F.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Heismann, F.

F. Heismann and R. C. Aferness, IEEE J. Quantum Electron. 24, 83 (1988).
[Crossref]

Hirao, K.

Hwang, I. K.

Ichikawa, M.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Kazansky, P. G.

Kim, B. Y.

Kino, G. S.

Kondo, Y.

Lee, H. P.

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Lin, C.-H.

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

Marcuse, D.

Meunier, G.

L. H. de Medeiros, G. Reyne, and G. Meunier, IEEE Trans. Magn. 35, 1215 (1999).
[Crossref]

Mitsuyu, T.

Nakagami, H.

Nouchi, K.

Peng, G.-D.

K. R. Sohn and G.-D. Peng, Opt. Commun. 278, 77 (2007).
[Crossref]

Reyne, G.

L. H. de Medeiros, G. Reyne, and G. Meunier, IEEE Trans. Magn. 35, 1215 (1999).
[Crossref]

Sakata, H.

San, K.-C.

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

Savin, S.

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Sohn, K. R.

K. R. Sohn and G.-D. Peng, Opt. Commun. 278, 77 (2007).
[Crossref]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Watanabe, M.

Wu, E.

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

Yang, R.-C.

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

Yun, S. H.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

F. Heismann and R. C. Aferness, IEEE J. Quantum Electron. 24, 83 (1988).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. Wu, R.-C. Yang, K.-C. San, C.-H. Lin, F. Alhassen, and H. P. Lee, IEEE Photon. Technol. Lett. 17, 612 (2005).
[Crossref]

IEEE Trans. Magn. (1)

L. H. de Medeiros, G. Reyne, and G. Meunier, IEEE Trans. Magn. 35, 1215 (1999).
[Crossref]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Opt. Commun. (2)

C. E. Chryssou, Opt. Commun. 184, 375 (2000).
[Crossref]

K. R. Sohn and G.-D. Peng, Opt. Commun. 278, 77 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Other (1)

J. F. Shackelford, W. Alexander, and J. S. Park, eds., Materials Science and Engineering Handbook,2nd ed. (CRC Press, 1994), p. 302.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the reconfigurable LPFG using a magnet to form a periodic microbend with a steel coil spring: (a) front view and (b) cross-sectional side view.

Fig. 2.
Fig. 2.

Distribution of pull force along the brass fiber holder with a 50 mm long magnet underneath.

Fig. 3.
Fig. 3.

Transmission spectrum of the LPFG using a 50 mm long coil spring. The dotted curve shows the transmission spectrum without a coil spring.

Fig. 4.
Fig. 4.

Wavelength shift with respect to variation of grating period. Solid lines are linear fittings of experimental data shown by symbols.

Fig. 5.
Fig. 5.

Loss peak wavelength of the LPFG as a function of temperature. Solid lines are linear fittings of experimental data shown by symbols.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(r,φ,z)=n0(r)+n0rdcos(2πΛz)cosφ,
λm=(ncon1m)Λ,
Δλm=0.8λm2Lc[(ncon1m)λmddλ(ncon1m)],

Metrics