Abstract

Autocorrelation is a common method to estimate the duration of ultrashort laser pulses. In the ultraviolet (UV) regime it is challenging to employ the process of second-harmonic generation, most prominently due to absorption in nonlinear crystals at very short wavelengths. Here we show how to utilize spontaneous parametric down-conversion (SPDC) to generate an autocorrelation signal in the infrared (IR) for UV pulses. Our method utilizes the nth-order emission of the SPDC process, which occurs for low pumping powers proportional to the nth power of the UV intensity. Thus, counting 2n down-converted photons directly yields the nth-order autocorrelation. The method, now with detection of near-IR photons, is applied to the first direct measurement of ultrashort UV pulses circulating inside a UV enhancement cavity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Träger, Handbook of Lasers and Optics (Springer Verlag, 2007) and references therein.
  2. N. F. Kleimeier, T. Haarlammert, H. Witte, U. Schühle, J.-F. Hochedez, and H. Zacharias, Opt. Express 18, 6945 (2010).
    [CrossRef]
  3. U. Graf, M. Fließ, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Express 16, 18956 (2008).
    [CrossRef]
  4. P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).
  5. T. S. Clement, A. J. Taylor, and D. J. Kane, Opt. Lett. 20, 70 (1995).
    [CrossRef]
  6. T. Nagy and P. Simon, Opt. Express 17, 8144 (2009).
    [CrossRef]
  7. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
    [CrossRef]
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  9. W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
    [CrossRef]
  10. R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
    [CrossRef]
  11. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, Appl. Opt. 24, 1270 (1985).
    [CrossRef]

2010

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

N. F. Kleimeier, T. Haarlammert, H. Witte, U. Schühle, J.-F. Hochedez, and H. Zacharias, Opt. Express 18, 6945 (2010).
[CrossRef]

2009

T. Nagy and P. Simon, Opt. Express 17, 8144 (2009).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

2008

2003

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

2002

1995

1985

Anderson, M. E.

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

Clement, T. S.

Diels, J.-C. M.

Fließ, M.

Fontaine, J. J.

Goulielmakis, E.

Graf, U.

Haarlammert, T.

Hochedez, J.-F.

Iaconis, C.

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

Jones, R. J.

Kane, D. J.

Kienberger, R.

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Kleimeier, N. F.

Krausz, F.

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Londero, P.

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

McMichael, I. C.

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Nagy, T.

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

Radzewicz, C.

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

Schühle, U.

Schultze, M.

Simon, P.

Simoni, F.

Taylor, A. J.

Tóth, G.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Träger, F.

F. Träger, Handbook of Lasers and Optics (Springer Verlag, 2007) and references therein.

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

Walmsley, I. A.

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Witte, H.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Ye, J.

Zacharias, H.

Appl. Opt.

J. Mod. Opt.

P. Londero, M. E. Anderson, C. Radzewicz, C. Iaconis, and I. A. Walmsley, J. Mod. Opt. 50, 2 (2003).

Nature Photonics

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nature Photonics 4, 170 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Other

F. Träger, Handbook of Lasers and Optics (Springer Verlag, 2007) and references therein.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Experimental setup; see main text. (b) Interferometric stability demonstration: black and red data points show the intensity on PD 1 during a measurement run. Red circles correspond to a pulse separation of τ=1850fs and black boxes to τ=0fs. The blue line represents the gPD11(τ) interference pattern on PD 1 over the entire pulse delay range τ (visibility 0.77). The inset shows a cutout thereof. (c) Calculated and directly measured spectra of the SPDC photons. Black boxes are the measured signal spectrum (H); red circles are the idler spectrum (V). Equally colored lines (straight and dashed, respectively) are the expectations for both.

Fig. 2.
Fig. 2.

(a) gPD11(τ)-function. Data measured on PD 1 (gray) fitted to the interference extrema by Eq. (2) (red lines). (b) Cavity level interference maxima gcav1(τ) (black), fitted by Eq. (2) (red line). Inset shows gHV1(τ) for HV coincidences with error bars from Poissonian counting statistics (equal color coding). (c) Intracavity UV pulse spectra: data (black boxes), fit thereon (solid black line), spectra from Fourier transform (FT) of gcav1(τ) (solid red line), gHV1(τ) (dashed blue line), and gPD11(τ) (dotted-dashed green line). (d) g2(τ) interference maxima from HHVV coincidences fitted by Eq. (3). Left inset shows the conversion factor γ, relating the g2(τ) full width half maximum (FWHM) to the FWHM pulse duration τpulse, over the interference visibility for sech-pulses. Right inset displays the HHHVVV coincidences and the g3(τ) expected from the g2(τ) parameters (error bars and color coding analog to (b)).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

gn(τ)=|(Ep(t)+Ep(tτ))n|2dt|Ep(t)n|2dt+|Ep(tτ)n|2dt
g1(τ)=1+2aba2+b2τΔtsinh(τ/Δt),
g2(τ)=1+18a2b2a4+b4(τΔt)cosh(τΔt)sinh(τΔt)sinh3(τΔt)+3(ab3+a3b)a4+b4sinh(2τΔt)(2τΔt)sinh3(τΔt).

Metrics