Abstract

We study a novel scheme named the spontaneous parametric fiber loop (SPFL), configured by deliberately introducing dispersive elements into the nonlinear Sagnac loop, and show it can function as a passive switch of photon pairs. The two-photon state coming out of SPFL highly depends on the dispersion induced phase difference of photon pairs counterpropagating in the loop. By properly managing the dispersive elements, the signal and idler photons of a pair with a certain detuning and bandwidth can be directed to the desired spatial modes of SPFL. If the photon pairs are used to generate heralded single photons, the SPFL can be viewed as a switch of single photons. Moreover, our investigation about the dispersion based phase modulation is also beneficial for designing all fiber sources of entangled photon pairs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. El-Bawab, Optical Switching (Springer, 2006).
  2. C. Elliott, New J. Phys. 4, 46 (2002).
    [CrossRef]
  3. M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
    [CrossRef]
  4. K. Mori, T. Morioka, and M. Saruwatari, Opt. Lett. 20, 1424 (1995).
    [CrossRef]
  5. D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]
  6. X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
    [CrossRef]
  7. J. Chen, K. F. Lee, and P. Kumar, Phys. Rev. A 76, 031804(R) (2007).
  8. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
    [CrossRef]
  9. X. Li, X. Ma, L. Quan, L. Yang, L. Cui, and X. Guo, J. Opt. Soc. Am. B 27, 1857 (2010).
    [CrossRef]
  10. L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
    [CrossRef]
  11. H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  12. H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).
  13. J. Chen, J. B. Altepeter, and P. Kumar, New J. Phys. 10, 123019 (2008).
    [CrossRef]

2011 (2)

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

2010 (1)

2009 (1)

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

2008 (1)

J. Chen, J. B. Altepeter, and P. Kumar, New J. Phys. 10, 123019 (2008).
[CrossRef]

2007 (1)

J. Chen, K. F. Lee, and P. Kumar, Phys. Rev. A 76, 031804(R) (2007).

2006 (1)

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

2004 (1)

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

2002 (2)

C. Elliott, New J. Phys. 4, 46 (2002).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

1995 (1)

1988 (1)

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

J. Chen, J. B. Altepeter, and P. Kumar, New J. Phys. 10, 123019 (2008).
[CrossRef]

Chen, J.

J. Chen, J. B. Altepeter, and P. Kumar, New J. Phys. 10, 123019 (2008).
[CrossRef]

J. Chen, K. F. Lee, and P. Kumar, Phys. Rev. A 76, 031804(R) (2007).

Cui, L.

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Li, X. Ma, L. Quan, L. Yang, L. Cui, and X. Guo, J. Opt. Soc. Am. B 27, 1857 (2010).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

El-Bawab, T. S.

T. S. El-Bawab, Optical Switching (Springer, 2006).

Elliott, C.

C. Elliott, New J. Phys. 4, 46 (2002).
[CrossRef]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Guo, X.

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Li, X. Ma, L. Quan, L. Yang, L. Cui, and X. Guo, J. Opt. Soc. Am. B 27, 1857 (2010).
[CrossRef]

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

Inoue, K.

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Katoh, K.

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

Kikuchi, K.

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

Kumar, P.

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

J. Chen, J. B. Altepeter, and P. Kumar, New J. Phys. 10, 123019 (2008).
[CrossRef]

J. Chen, K. F. Lee, and P. Kumar, Phys. Rev. A 76, 031804(R) (2007).

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Lee, K. F.

J. Chen, K. F. Lee, and P. Kumar, Phys. Rev. A 76, 031804(R) (2007).

Li, X.

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Li, X. Ma, L. Quan, L. Yang, L. Cui, and X. Guo, J. Opt. Soc. Am. B 27, 1857 (2010).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Lim, H. C.

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

Ma, X.

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Li, X. Ma, L. Quan, L. Yang, L. Cui, and X. Guo, J. Opt. Soc. Am. B 27, 1857 (2010).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Mori, K.

Morioka, T.

Mortimore, D. B.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Ou, Z. Y.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Quan, L.

Saruwatari, M.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Takesue, H.

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Tanemura, T.

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

Wang, D.

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

Yang, L.

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Li, X. Ma, L. Quan, L. Yang, L. Cui, and X. Guo, J. Opt. Soc. Am. B 27, 1857 (2010).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Yu, D.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett. 14, 983 (2002).
[CrossRef]

J. Lightwave Technol. (1)

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (2)

C. Elliott, New J. Phys. 4, 46 (2002).
[CrossRef]

J. Chen, J. B. Altepeter, and P. Kumar, New J. Phys. 10, 123019 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (4)

L. Yang, X. Ma, X. Guo, L. Cui, and X. Li, Phys. Rev. A 83, 053843 (2011).
[CrossRef]

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, Phys. Rev. A 79, 033817 (2009).
[CrossRef]

J. Chen, K. F. Lee, and P. Kumar, Phys. Rev. A 76, 031804(R) (2007).

Phys. Rev. Lett. (1)

M. A. Hall, J. B. Altepeter, and P. Kumar, Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef]

Other (2)

T. S. El-Bawab, Optical Switching (Springer, 2006).

H. C. Lim, D. Wang, T. Tanemura, K. Katoh, and K. Kikuchi, eprint arXiv: quant-ph/0607179 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Experimental setup. The configuration of SPFL is shown in the square frame. The generation and transmission of photon pairs in the CW and CCW directions of SPFL are illustrated in plots (b) and (c), respectively.

Fig. 2.
Fig. 2.

Experimental results. (a) Single-count rate of each SPD, Rs, versus the detuning Δλ. The inset is the true coincidence CT versus Δλ. The hollow circles and triangles represent the data for photon pairs in the same and different spatial modes, respectively. The solid and dashed curves are the fits to Eq. (5) with α=0.0435ps2 and with ξ=29.5 and ξ=32.3, respectively. (b) and (c) plot CT versus the average pump power for Δλ=10.75 and Δλ=15.2nm, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

|ψ=cosϕ2|ψ1+sinϕ2|ψ2,
|ψ=cosϕd2|ψ1+sinϕd2|ψ2.
Csi1±cosϕd.
ϕdΔΩ2β2(L1L2),
CT=ξ[1±cos(4π2αΔλ2c2/(λi0λp0)2)],

Metrics