Abstract

A mid-infrared (mid-IR)-focusing subwavelength grating (SWG) coupler and suspended membrane waveguide (SMW) on a silicon-on-insulator wafer are studied. For a transverse-electric mode uniform SWG, finite-difference time-domain simulation predicts 44.2% coupling efficiency with 1 dB bandwidth of about 220 nm and backreflection of 0.78% at 2.75 μm. Then the uniform SWG is curved to a focusing SWG using a phase-matching formula. The SMWs are analyzed by the finite element method and fabricated. An Er3+Pr3+ co-doped mid-IR fiber laser is used for device characterization. The fabricated mid-IR SWG coupler has 24.7% coupling efficiency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription