Abstract

An effective optical readout approach based on a narrow-strip filter is presented to detect bends of a bimaterial microcantilever focal plane array, by which light intensity of the image plane (CCD image sensor plane) can be increased and its uniformity on the image plane effectively enhanced. It reduces the noise equivalent temperature difference of the microcantilever focal plane array IR imaging system and improves uniformity of the IR images. A comparative experiment is designed to verify effectiveness. The experimental results show that the proposed method has advantages of preferable effect.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
    [CrossRef]
  2. T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation-displacement-conversion devices and methods and image-rendering apparatus and methods employing same,” U.S. patent 6,080,988 (June27, 2000).
  3. T. Ishizuya and M. Koyama, “Radiation imaging device and radiation detector,” U.S. patent 6,339,219 (January15, 2002).
  4. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
    [CrossRef]
  5. M. Liu, Y. Zhao, L. Dong, X. Yu, X. Liu, M. Hui, J. You, and Y. Yi, Opt. Lett. 34, 3547 (2009).
    [CrossRef]
  6. F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
    [CrossRef]
  7. Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
    [CrossRef]
  8. P. W. Kruse, Semicond. Semimet. 47, 17 (1997).
    [CrossRef]

2009

2007

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

2003

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

2002

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

2001

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
[CrossRef]

1997

P. W. Kruse, Semicond. Semimet. 47, 17 (1997).
[CrossRef]

Akagawa, K.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
[CrossRef]

T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation-displacement-conversion devices and methods and image-rendering apparatus and methods employing same,” U.S. patent 6,080,988 (June27, 2000).

Amemiya, N.

T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation-displacement-conversion devices and methods and image-rendering apparatus and methods employing same,” U.S. patent 6,080,988 (June27, 2000).

Chen, D.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Dong, F.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Dong, L.

Duan, Z.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Guo, Z.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Horowitz, R.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Hui, M.

Ishizuya, T.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
[CrossRef]

T. Ishizuya and M. Koyama, “Radiation imaging device and radiation detector,” U.S. patent 6,339,219 (January15, 2002).

T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation-displacement-conversion devices and methods and image-rendering apparatus and methods employing same,” U.S. patent 6,080,988 (June27, 2000).

Kazama, T.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
[CrossRef]

Kitching, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Koyama, M.

T. Ishizuya and M. Koyama, “Radiation imaging device and radiation detector,” U.S. patent 6,339,219 (January15, 2002).

Kruse, P. W.

P. W. Kruse, Semicond. Semimet. 47, 17 (1997).
[CrossRef]

Liu, M.

Liu, X.

Majumdar, A.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Mao, M.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Norton, P.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Pan, L.

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Pan, Liang

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Suzuki, J.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
[CrossRef]

Varesi, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Wang, W.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Wu, X.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Yi, Y.

You, J.

Yu, X.

Zhang, Q.

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Zhao, Y.

M. Liu, Y. Zhao, L. Dong, X. Yu, X. Liu, M. Hui, J. You, and Y. Yi, Opt. Lett. 34, 3547 (2009).
[CrossRef]

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Chin. Phys. Lett.

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

J. Microelectromech. Syst.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, J. Microelectromech. Syst. 11, 136 (2002).
[CrossRef]

Opt. Lett.

Proc. SPIE

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, Proc. SPIE 4369, 342 (2001).
[CrossRef]

Semicond. Semimet.

P. W. Kruse, Semicond. Semimet. 47, 17 (1997).
[CrossRef]

Sens. Actuators A

F. Dong, Q. Zhang, D. Chen, Liang Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, Sens. Actuators A 133, 236 (2007).
[CrossRef]

Other

T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation-displacement-conversion devices and methods and image-rendering apparatus and methods employing same,” U.S. patent 6,080,988 (June27, 2000).

T. Ishizuya and M. Koyama, “Radiation imaging device and radiation detector,” U.S. patent 6,339,219 (January15, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Microcantilever FPA photo from the scanning electron microscope and (b) a unit cell structure in the FPA.

Fig. 2.
Fig. 2.

Schematic of the optical readout system based on a narrow-strip filter for uncooled IR imaging.

Fig. 3.
Fig. 3.

(a) Photo of the narrow-strip captured by a Veeco optical profiler, (b) the filter’s position and the theoretical spectrum distribution of a cantilever pixel in the two conditions (the solid curve represents the spectrum distribution of the condition without IR radiation, and the dashed curve represents the spectrum distribution of the condition with IR radiation).

Fig. 4.
Fig. 4.

Different intensity distributions of light filtered by different filters captured by the CCD on the image plane.

Fig. 5.
Fig. 5.

Different IR imaging results using different optical readout methods (the IR target is an electric iron at 418 K).

Tables (2)

Tables Icon

Table 1. ΔT and W at Different ΔTS in Theory

Tables Icon

Table 2. Values in Different Optical Readout Methods

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ΔT=Aετπ(dP/dT)λ1λ24Fno2(Gleg+Grad)×ΔTS,
Grad=4Apixel(εAu+εSiN)σT3.
Gleg=AlegkSiN/Lleg,
δ=3(αAuαSiN)(n+1K)(Lm2dSiN)×ΔT.
Xufsin(2×δLm),
NETD=(TtTb)×VrmsVtarget.
Vrms={i=1Sf(n=1SaVn2)÷Sa}÷Sf.

Metrics