Abstract

We proposed and experimentally demonstrated the iterative domino algorithm to optimize optical superlattice with >105 unit blocks to achieve arbitrary target phase-matching power spectrum. This scheme can achieve unprecedented overall conversion efficiency and spectral fidelity with extremely high computation efficiency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hum and M. M. Fejer, C.R. Physique 8, 180 (2007).
  2. M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, Opt. Lett. 32, 3388 (2007).
    [CrossRef]
  3. Y.-W. Lee, F.-C. Fan, Y.-C. Huang, B.-Y. Gu, B.-Z. Dong, and M.-H. Chou, Opt. Lett. 27, 2191 (2002).
    [CrossRef]
  4. J.-Y. Lai, Y.-J. Liu, H.-Y. Wu, Y.-H. Chen, and S.-D. Yang, Opt. Express 18, 5328 (2010).
    [CrossRef]
  5. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, Opt. Lett. 36, 864 (2011).
    [CrossRef]
  6. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
    [CrossRef]

2011 (1)

2010 (1)

2007 (2)

2003 (1)

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
[CrossRef]

2002 (1)

Agronin, A.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
[CrossRef]

Asobe, M.

Chang, D.

Chen, Y.-H.

Chou, M.-H.

Dong, B.-Z.

Fan, F.-C.

Fejer, M. M.

Gu, B.-Y.

Huang, Y.-C.

Hum, D. S.

D. S. Hum and M. M. Fejer, C.R. Physique 8, 180 (2007).

Lai, J.-Y.

Langrock, C.

Lee, Y.-W.

Liu, Y.-J.

Magari, K.

Molotskii, M.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
[CrossRef]

Nishida, Y.

Pelc, J. S.

Phillips, C. R.

Rosenman, G.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
[CrossRef]

Rosenwaks, Y.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Umeki, T.

Urenski, P.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, Appl. Phys. Lett. 82, 103 (2003).
[CrossRef]

Wu, H.-Y.

Yanagawa, T.

Yang, S.-D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of HAOS and the corresponding domain orientation distribution function. (b) The conceptual target PM tuning curve.

Fig. 2.
Fig. 2.

(a) Simulated PM tuning curves of three devices designed by HAOS + ID (solid), NOS + GA (dashed-dotted), and AOS + SA (dashed), respectively. The target spectrum S1 (open circles) consists of five peaks distributed in a V-shape. (b) The overall conversion efficiency (dashed) and the number of inverted blocks (solid) versus number of iterations.

Fig. 3.
Fig. 3.

Simulated PM tuning curves of two devices designed by HAOS+ID (solid) and AOS+SA (dashed), respectively. The target spectrum S2 (open circles) consists of 21 uniformly distributed peaks during 1530–1590 nm.

Fig. 4.
Fig. 4.

Experimentally measured PM tuning curves designed for target spectra (open circles) (a) S1 and (b) S2 by HAOS+ID (solid), NOS+GA (dashed-dotted), and AOS+SA (dashed), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η(λ)=ηnorm(λ)×|G(λ)|2,G(λ)=1L0Lg(x)eiΔk·xdx,
G(λ)=n=1Nδn×zn(Δk),zn(Δk)=eiΔk·xneiΔk·xn1Δk×L,
G(λα)=G(λα)2zn(Δk).
F1=α=1M|ηαηα(0)ηα(0)|pp(p2),
Δηrip±0.5×[max(ηα)min(ηα)]/(ηtot/M).
F2=F1+b×α=1|ηαηtot×ηα(0)|(b>0).

Metrics