Abstract

We report the first Ho3+ doped waveguide laser, which was realized by femtosecond direct-writing of a depressed cladding structure into ZBLAN glass. Tm3+ sensitizing allows the 9 mm long Ho3+ gain medium to be conveniently pumped at 790 nm, achieving an optical-to-optical slope efficiency of 20% and a threshold of 20 mW. The potentially widely tunable laser produces up to 76 mW at 2052 nm and also operates at shorter wavelengths near 1880 nm and 1978 nm for certain cavity configurations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).
  2. G. L. Bourdet and R. A. Muller, Appl. Phys. B 70, 345 (2000).
  3. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).
  4. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, Opt. Lett. 36, 1566 (2011).
    [CrossRef]
  5. K. Van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, Opt. Express 19, 5277 (2011).
    [CrossRef]
  6. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, Opt. Lett. 36, 1587 (2011).
    [CrossRef]
  7. C. Grivas, Prog. Quantum Electron. 35, 159 (2011).
  8. R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
  9. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, Opt. Express 18, 16035 (2010).
    [CrossRef]
  10. J. Hu and C. R. Menyuk, Adv. Opt. Photon. 1, 58 (2009).
    [CrossRef]
  11. A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
    [CrossRef]
  12. X. Zou and H. Toratani, J. Non-Cryst. Solids 195, 113 (1996).
  13. S. D. Jackson, Electron. Lett. 37, 821 (2001).
    [CrossRef]
  14. J. Wu, Z. Yao, J. Zong, and A. Chavez-Pirson, Fiber Lasers VI: Technology, Systems and Applications, D. V. Gapontsev, ed. (SPIE, 2009), Vol. 7195.
  15. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, Opt. Lett. 34, 247 (2009).
    [CrossRef]

2011 (4)

2010 (2)

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, Opt. Express 18, 16035 (2010).
[CrossRef]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

2009 (2)

2008 (1)

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).

2007 (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).

2001 (1)

S. D. Jackson, Electron. Lett. 37, 821 (2001).
[CrossRef]

2000 (2)

G. L. Bourdet and R. A. Muller, Appl. Phys. B 70, 345 (2000).

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

1996 (1)

X. Zou and H. Toratani, J. Non-Cryst. Solids 195, 113 (1996).

Ams, M.

Aravazhi, S.

Bain, F. M.

Bennetts, S.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet and R. A. Muller, Appl. Phys. B 70, 345 (2000).

Brown, C. T. A.

Budni, P. A.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Calmano, T.

Chavez-Pirson, A.

J. Wu, Z. Yao, J. Zong, and A. Chavez-Pirson, Fiber Lasers VI: Technology, Systems and Applications, D. V. Gapontsev, ed. (SPIE, 2009), Vol. 7195.

Chicklis, E. P.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Dekker, P.

Ebendorff-Heidepriem, H.

Fuerbach, A.

Fusari, F.

Gattass, R. R.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).

Geskus, D.

Grivas, C.

C. Grivas, Prog. Quantum Electron. 35, 159 (2011).

Gross, S.

Hemming, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

Hu, J.

Huber, G.

Jackson, S. D.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).

S. D. Jackson, Electron. Lett. 37, 821 (2001).
[CrossRef]

Jha, A.

Jose, G.

Kar, A. K.

Kuan, K.

Lagatsky, A. A.

Lancaster, D. G.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, Opt. Lett. 36, 1587 (2011).
[CrossRef]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).

Lemons, M. L.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Marshall, G. D.

Mazur, E.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).

Menyuk, C. R.

Miller, C. A.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Monro, T. M.

Mosto, J. R.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Muller, R. A.

G. L. Bourdet and R. A. Muller, Appl. Phys. B 70, 345 (2000).

Petermann, K.

Pollnau, M.

Pomeranz, L. A.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Psaila, N. D.

Sabella, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).

Sibbett, W.

Siebenmorgen, J.

Thomson, R. R.

Toratani, H.

X. Zou and H. Toratani, J. Non-Cryst. Solids 195, 113 (1996).

Van Dalfsen, K.

Withford, M. J.

Wörhoff, K.

Wu, J.

J. Wu, Z. Yao, J. Zong, and A. Chavez-Pirson, Fiber Lasers VI: Technology, Systems and Applications, D. V. Gapontsev, ed. (SPIE, 2009), Vol. 7195.

Yao, Z.

J. Wu, Z. Yao, J. Zong, and A. Chavez-Pirson, Fiber Lasers VI: Technology, Systems and Applications, D. V. Gapontsev, ed. (SPIE, 2009), Vol. 7195.

Zong, J.

J. Wu, Z. Yao, J. Zong, and A. Chavez-Pirson, Fiber Lasers VI: Technology, Systems and Applications, D. V. Gapontsev, ed. (SPIE, 2009), Vol. 7195.

Zou, X.

X. Zou and H. Toratani, J. Non-Cryst. Solids 195, 113 (1996).

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

G. L. Bourdet and R. A. Muller, Appl. Phys. B 70, 345 (2000).

Electron. Lett. (2)

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, Electron. Lett. 46, 1617 (2010).
[CrossRef]

S. D. Jackson, Electron. Lett. 37, 821 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).

J. Non-Cryst. Solids (1)

X. Zou and H. Toratani, J. Non-Cryst. Solids 195, 113 (1996).

J. Opt. Soc. Am. (1)

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. 17, 723 (2000).

Nat. Photon. (1)

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).

Opt. Express (2)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

C. Grivas, Prog. Quantum Electron. 35, 159 (2011).

Other (1)

J. Wu, Z. Yao, J. Zong, and A. Chavez-Pirson, Fiber Lasers VI: Technology, Systems and Applications, D. V. Gapontsev, ed. (SPIE, 2009), Vol. 7195.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

End-on microscope image of the direct-write WG structures in Ho, Tm:ZBLAN, which are made up of 24 partially overlapping modifications. The WGs are located 300 μm below the surface. The inset is a top view of the WG structure.

Fig. 2.
Fig. 2.

Measured absorption spectrum of the 0.22 mol% HoF3 and 1.96 mol% TmF3 doped ZBLAN glass.

Fig. 3.
Fig. 3.

The experimental configuration used to characterize the Tm3+ sensitized Ho3+:ZBLAN laser.

Fig. 4.
Fig. 4.

Spectral characteristics of the Ho, Tm: ZBLAN laser for two resonator OCs (a) R=77%, (b) R=95%. Figure 4(b) (inset) is the uncollimated output from the Ho, Tm:ZBLAN laser operating at 2052 nm (note the WG writing direction was from the top of the image).

Fig. 5.
Fig. 5.

Slope efficiencies for the Ho, Tm:ZBLAN WG laser for a range of resonator OC mirrors.

Metrics