Abstract

We report on the formation of one- and two-dimensional (1D and 2D) nanohole arrays on the surface of a silicon wafer by scanning with a femtosecond laser with appropriate power and speed. The underlying physical mechanism is revealed by numerical simulation based on the finite-difference time-domain technique. It is found that the length and depth of the initially formed gratings (or ripples) plays a crucial role in the generation of 1D or 2D nanohole arrays. The silicon surface decorated with such nanohole arrays can exhibit vivid structural colors through efficiently diffracting white light.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription