Abstract

We present our first results on our implementation of a laser based accelerator for ultracold atoms. Atoms cooled to a temperature of 420 nK are confined and accelerated by means of laser tweezer beams, and the atomic scattering is directly observed in laser absorption imaging. The optical collider has been characterized using Rb87 atoms in the |F=2,mF=2 state, but the scheme is not restricted to atoms in any particular magnetic substates and can readily be extended to other atomic species as well.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Taylor, Scattering Theory (Dover, 2006).
  2. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
    [CrossRef]
  3. R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
    [CrossRef]
  4. N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
    [CrossRef]
  5. Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
    [CrossRef]
  6. A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
    [CrossRef]
  7. Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
    [CrossRef]
  8. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
    [CrossRef]
  9. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
    [CrossRef]
  10. Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
    [CrossRef]
  11. Y. Nishida, “‘Hard probes’ of strongly-interacting atomic gases,” http://arxiv.org/abs/1110.5926 (2011).
  12. J. Levinsen and D. S. Petrov, Eur. Phys. J. D 65, 67 (2011).
    [CrossRef]
  13. U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
    [CrossRef]
  14. Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
    [CrossRef]
  15. M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
    [CrossRef]
  16. P. H. Meckl, P. B. Arestides, and M. Woods, in Proceedings of the 1998 American Control Conference Vol. 5 (American Automatic Control Council, 1998), pp. 2627–2631.
  17. A. C. J. Wade, D. Baillie, and P. B. Blakie, Phys. Rev. A 84, 023612 (2011).
    [CrossRef]
  18. R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
    [CrossRef]

2012 (1)

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

2011 (2)

A. C. J. Wade, D. Baillie, and P. B. Blakie, Phys. Rev. A 84, 023612 (2011).
[CrossRef]

J. Levinsen and D. S. Petrov, Eur. Phys. J. D 65, 67 (2011).
[CrossRef]

2010 (3)

M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
[CrossRef]

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[CrossRef]

Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
[CrossRef]

2007 (1)

A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
[CrossRef]

2004 (3)

N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
[CrossRef]

Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
[CrossRef]

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

2000 (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

1999 (1)

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[CrossRef]

1998 (2)

R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
[CrossRef]

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

1997 (1)

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Arestides, P. B.

P. H. Meckl, P. B. Arestides, and M. Woods, in Proceedings of the 1998 American Control Conference Vol. 5 (American Automatic Control Council, 1998), pp. 2627–2631.

Arnold, A. S.

M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
[CrossRef]

Bagnato, V. S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[CrossRef]

Baillie, D.

A. C. J. Wade, D. Baillie, and P. B. Blakie, Phys. Rev. A 84, 023612 (2011).
[CrossRef]

Beeler, M. C.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Ben Dahan, M.

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Blakie, P. B.

A. C. J. Wade, D. Baillie, and P. B. Blakie, Phys. Rev. A 84, 023612 (2011).
[CrossRef]

Bouchoule, I.

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Buggle, Ch.

Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
[CrossRef]

Castin, Y.

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Chin, C.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[CrossRef]

D’Incao, J. P.

Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
[CrossRef]

Ernst, U.

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

Esry, B. D.

Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
[CrossRef]

Gibble, K.

R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
[CrossRef]

Griffin, P. F.

M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
[CrossRef]

Grimm, R.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[CrossRef]

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Jiménez-Garcia, K.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Julienne, P.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[CrossRef]

Julienne, P. S.

A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
[CrossRef]

N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
[CrossRef]

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[CrossRef]

Ketterle, W.

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

Kjærgaard, N.

A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
[CrossRef]

N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
[CrossRef]

Leanhardt, A. E.

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

LeBlanc, L. J.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Legere, R.

R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
[CrossRef]

Léonard, J.

Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
[CrossRef]

Levinsen, J.

J. Levinsen and D. S. Petrov, Eur. Phys. J. D 65, 67 (2011).
[CrossRef]

Marte, A.

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

Meckl, P. H.

P. H. Meckl, P. B. Arestides, and M. Woods, in Proceedings of the 1998 American Control Conference Vol. 5 (American Automatic Control Council, 1998), pp. 2627–2631.

Mellish, A. S.

A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
[CrossRef]

Nägerl, H. C.

Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
[CrossRef]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Pasquini, T. A.

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

Peik, E.

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Perry, A. R.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Petrov, D. S.

J. Levinsen and D. S. Petrov, Eur. Phys. J. D 65, 67 (2011).
[CrossRef]

Phillips, W. D.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Pritchard, D. E.

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

Rempe, G.

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

Riis, E.

M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
[CrossRef]

Saba, M.

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

Salomon, C.

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Schreck, F.

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

Schuster, J.

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

Shin, Y.

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

Spielman, I. B.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Taylor, J. R.

J. R. Taylor, Scattering Theory (Dover, 2006).

Thomas, N. R.

N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
[CrossRef]

Tiesinga, E.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[CrossRef]

von Klitzing, W.

Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
[CrossRef]

Wade, A. C. J.

A. C. J. Wade, D. Baillie, and P. B. Blakie, Phys. Rev. A 84, 023612 (2011).
[CrossRef]

Walraven, J. T. M.

Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
[CrossRef]

Wang, Y.

Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
[CrossRef]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Weiner, J.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[CrossRef]

Williams, R. A.

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Wilson, A. C.

A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
[CrossRef]

N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
[CrossRef]

Woods, M.

P. H. Meckl, P. B. Arestides, and M. Woods, in Proceedings of the 1998 American Control Conference Vol. 5 (American Automatic Control Council, 1998), pp. 2627–2631.

Zawadzki, M. E.

M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
[CrossRef]

Zilio, S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Appl. Phys. B (1)

Outside the context of colliders, laser acceleration of cold atoms has been demonstrated using far detuned “moving standing waves”; see, e.g., E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Appl. Phys. B 65, 685 (1997).
[CrossRef]

Eur. Phys. J. D (1)

J. Levinsen and D. S. Petrov, Eur. Phys. J. D 65, 67 (2011).
[CrossRef]

Europhys. Lett. (1)

U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).
[CrossRef]

Phys. Rev. A (3)

M. E. Zawadzki, P. F. Griffin, E. Riis, and A. S. Arnold, Phys. Rev. A 81, 043608 (2010).
[CrossRef]

A. C. J. Wade, D. Baillie, and P. B. Blakie, Phys. Rev. A 84, 023612 (2011).
[CrossRef]

A. S. Mellish, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. A 75, 020701 (2007).
[CrossRef]

Phys. Rev. Lett. (5)

R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
[CrossRef]

N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Phys. Rev. Lett. 93, 173201 (2004).
[CrossRef]

Ch. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Phys. Rev. Lett. 93, 173202 (2004).
[CrossRef]

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).
[CrossRef]

Y. Wang, J. P. D’Incao, H. C. Nägerl, and B. D. Esry, Phys. Rev. Lett. 104, 113201 (2010).
[CrossRef]

Rev. Mod. Phys. (2)

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999).
[CrossRef]

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[CrossRef]

Science (1)

R. A. Williams, L. J. LeBlanc, K. Jiménez-Garcıa, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314 (2012).
[CrossRef]

Other (3)

P. H. Meckl, P. B. Arestides, and M. Woods, in Proceedings of the 1998 American Control Conference Vol. 5 (American Automatic Control Council, 1998), pp. 2627–2631.

Y. Nishida, “‘Hard probes’ of strongly-interacting atomic gases,” http://arxiv.org/abs/1110.5926 (2011).

J. R. Taylor, Scattering Theory (Dover, 2006).

Supplementary Material (1)

» Media 1: MOV (307 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Collider configuration. The right vertical laser beam accelerates atoms toward target atoms in the left crossed-beam trap. The resulting collisional halo is imaged using absorption imaging. (b) Single frame excerpts of a movie (Media 1) showing scattering from clouds in the collider (the horizontal guide beam is extinguished when the atomic clouds overlap so that the clouds and scattered atoms are allowed to expand in free space).

Fig. 2.
Fig. 2.

Displacement profile (separation and acceleration) for the moving vertical laser beam (dashed curve) with respect to the stationary vertical beam (dash-dotted curve). Points show the experimentally determined positions of the moving cloud after 0.5 ms time of flight (the error bars are smaller than the size of the marker). The horizontal blue line indicates the position at which the vertical beams are switched off, and the purple line is a linear fit to the cloud position with increasing time of flight. The red curve shows the predicted cloud position during the acceleration phase.

Fig. 3.
Fig. 3.

Measured cloud velocities when accelerating with three different jerks (red, green, blue).

Fig. 4.
Fig. 4.

(a) Effective potential in a reference frame following a Gaussian laser beam at four different accelerations and (b) corresponding absorption images of clouds (7 ms time of flight) after ramping to these accelerations. The potentials are vertically offset for clarity. Cloud temperature is 250 nK.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a max = 2 U 0 w 0 m exp ( 1 / 2 ) ,
ν f = 3 a max d sep / 2 .

Metrics