Abstract

We present an optofluidic nonlinear coupler fabricated by selective filling of two strands of a photonic crystal fiber with the liquid CCl4 which exhibits a large ultrafast Kerr nonlinearity. We demonstrate power dependent switching in this novel optofluidic device. The large thermo-optical effect of liquids enables us to tune the behavior of the nonlinear coupler by changing the coupling strength with temperature. This opens the road towards flexible designs and realization of a new class of tunable ultrafast nonlinear couplers with switching times below 1 ps.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).
  2. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
    [CrossRef]
  3. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett. 13, 904 (1988).
    [CrossRef]
  4. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, Opt. Express 18, 25232 (2010).
  5. T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).
  6. H. H. Marvin, Phys. Rev. 34, 161 (1912).
  7. S. Pricking, M. Vieweg, and H. Giessen, Opt. Express 19, 21673 (2011).
  8. C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).
  9. P. D. Rasmussen, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, O. Bang, J. Lægsgaard, and Y. Kivshar, Opt. Lett. 34, 295 (2009).
    [CrossRef]
  10. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, Opt. Lett. 13, 672 (1988).
    [CrossRef]
  11. F. Hoos, S. Pricking, and H. Giessen, Opt. Express 14, 10913 (2006).
    [CrossRef]
  12. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed., Optics and Photonics Series (Academic, 2008).
  13. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef]

2011 (2)

T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).

S. Pricking, M. Vieweg, and H. Giessen, Opt. Express 19, 21673 (2011).

2010 (2)

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, Opt. Express 18, 25232 (2010).

C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).

2009 (2)

2006 (1)

1988 (2)

1987 (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

1982 (1)

S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).

1912 (1)

H. H. Marvin, Phys. Rev. 34, 161 (1912).

Abdou-Ahmed, M.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed., Optics and Photonics Series (Academic, 2008).

Andrejco, M. J.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Bang, O.

Biancalana, F.

C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).

Conti, C.

C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).

Eggleton, B. J.

Friberg, S. R.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Giessen, H.

Gissibl, T.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, Opt. Express 18, 25232 (2010).

Graf, T.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).

Hoos, F.

Jensen, S. M.

S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).

Kivshar, Y.

Krolikowski, W.

Kuhlmey, B. T.

Lægsgaard, J.

Marvin, H. H.

H. H. Marvin, Phys. Rev. 34, 161 (1912).

Neshev, D. N.

Oliver, M. K.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Pricking, S.

Rasmussen, P. D.

Russell, P. St.

C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).

Saifi, M. A.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Schmidt, M. A.

C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).

Sfez, B. G.

Silberberg, Y.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Smith, P. S.

Smith, P. W.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Stegeman, G. I.

Sukhorukov, A. A.

Trillo, S.

Vieweg, M.

Vogel, M. M.

T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).

Wabnitz, S.

Weiner, A. M.

Wright, E. M.

Wu, D. C.

Wu, D. K.

Appl. Phys. B (1)

T. Gissibl, M. Vieweg, M. M. Vogel, M. Abdou-Ahmed, T. Graf, and H. Giessen, Appl. Phys. B 106, 521 (2011).

Appl. Phys. Lett. (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. (1)

H. H. Marvin, Phys. Rev. 34, 161 (1912).

Phys. Rev. Lett. (1)

C. Conti, M. A. Schmidt, P. St. Russell, and F. Biancalana, Phys. Rev. Lett. 105, 263902 (2010).

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed., Optics and Photonics Series (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Illustration of an optofluidic coupler scaffolded by a photonic crystal fiber. (b) Microscope image of a fluid-filled photonic crystal fiber with two CCl4 strands acting as nonlinear coupler.

Fig. 2.
Fig. 2.

(a) Experimentally measured power distribution between the two channels S1 (blue) and S2 (red) of the optofluidic coupler versus input power. (b) Theoretically calculated dependencies of power distribution on dimensionless input power U. (c)–(e) Measured intensity distributions at the output of the optofluidic coupler at (c) 3.5 kW, (d) 24.2 kW, and (e) 58.7 kW.

Fig. 3.
Fig. 3.

(a) Experimentally measured (symbols) power distribution between coupler channels versus temperature and a sine function (solid lines) as guides to the eyes. (b) Experimentally measured coupling constant (curve 1, blue) and coupling constant obtained from FEM simulations with Comsol (curve 2, red) versus temperature.

Fig. 4.
Fig. 4.

Experimentally measured power distribution between output channels S1 and S2 versus input power at (a) T=16°C, (b) T=23.8°C, and (c) T=26°C for the same nonlinear optofluidic coupler.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

iqξ=12(2qη2+2qζ2)σ(η,ζ)q|q|2R(η,ζ)q,
P0=Uλ24π2n0n2.

Metrics