Abstract

The redistribution of transversal energy flow and polarization in the focal field are represented by obstructing an azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Several energy flow rings that can finally transport the absorptive particles into fixed locations are formed in the focal plane. Furthermore, the local polarization state of the focal field is also modified by use of the rotationally symmetric obstacles. This kind of energy flow may have wide applications in optical trapping and manipulation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  2. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef]
  3. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
    [CrossRef]
  4. Y. Zhan, Q. Zhan, Y. Zhang, and Y. Li, Opt. Lett. 30, 848 (2005).
    [CrossRef]
  5. Y. Kozawa and S. Sato, Opt. Lett. 31, 820 (2006).
    [CrossRef]
  6. B. Tian and J. Pu, Opt. Lett. 36, 2014 (2011).
    [CrossRef]
  7. S. Vyas, Y. Kozawa, and S. Sato, J. Opt. Soc. Am. A 28, 837 (2011).
    [CrossRef]
  8. S. Vyas, M. Niwa, Y. Kozawa, and S. Sato, J. Opt. Soc. Am. A 28, 1387 (2011).
    [CrossRef]
  9. X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
    [CrossRef]
  10. G. H. Yuan, S. B. Wei, and X.-C. Yuan, J. Opt. Soc. Am. A 28, 1716 (2011).
    [CrossRef]
  11. B. Richards and E. Wolf, Proc. Roy. Soc. London Series A 253, 358 (1959).
    [CrossRef]
  12. A. Normatov, B. Spektor, and J. Shamir, Opt. Commun. 283, 3585 (2010).
    [CrossRef]
  13. M. V. Berry, J. Opt. A 11, 094001 (2009).
    [CrossRef]
  14. X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
    [CrossRef]
  15. Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89, 241104 (2006).
    [CrossRef]
  16. X. Lian and B. Lü, Opt. Commun. 284, 5253 (2011).
    [CrossRef]

2011 (6)

2010 (2)

A. Normatov, B. Spektor, and J. Shamir, Opt. Commun. 283, 3585 (2010).
[CrossRef]

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

2009 (2)

M. V. Berry, J. Opt. A 11, 094001 (2009).
[CrossRef]

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[CrossRef]

2008 (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

2006 (2)

Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89, 241104 (2006).
[CrossRef]

Y. Kozawa and S. Sato, Opt. Lett. 31, 820 (2006).
[CrossRef]

2005 (1)

2000 (1)

1959 (1)

B. Richards and E. Wolf, Proc. Roy. Soc. London Series A 253, 358 (1959).
[CrossRef]

Berry, M. V.

M. V. Berry, J. Opt. A 11, 094001 (2009).
[CrossRef]

Bomzon, Z.

Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89, 241104 (2006).
[CrossRef]

Brown, T. G.

Chen, J.

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

Ding, J.

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Gu, B.

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

Gu, M.

Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89, 241104 (2006).
[CrossRef]

Guo, C.-S.

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Kozawa, Y.

L, Y.

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

Li, Y.

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Y. Zhan, Q. Zhan, Y. Zhang, and Y. Li, Opt. Lett. 30, 848 (2005).
[CrossRef]

Lian, X.

X. Lian and B. Lü, Opt. Commun. 284, 5253 (2011).
[CrossRef]

Lou, K.

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

Lü, B.

X. Lian and B. Lü, Opt. Commun. 284, 5253 (2011).
[CrossRef]

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

Niwa, M.

Normatov, A.

A. Normatov, B. Spektor, and J. Shamir, Opt. Commun. 283, 3585 (2010).
[CrossRef]

Pu, J.

Richards, B.

B. Richards and E. Wolf, Proc. Roy. Soc. London Series A 253, 358 (1959).
[CrossRef]

Sato, S.

Shamir, J.

A. Normatov, B. Spektor, and J. Shamir, Opt. Commun. 283, 3585 (2010).
[CrossRef]

Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89, 241104 (2006).
[CrossRef]

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

Spektor, B.

A. Normatov, B. Spektor, and J. Shamir, Opt. Commun. 283, 3585 (2010).
[CrossRef]

Tian, B.

Vyas, S.

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

Wang, H.-T.

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Wang, X.

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Wang, X.-L.

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

Wei, S. B.

Wolf, E.

B. Richards and E. Wolf, Proc. Roy. Soc. London Series A 253, 358 (1959).
[CrossRef]

Youngworth, K. S.

Yuan, G. H.

Yuan, X.-C.

Zhan, Q.

Zhan, Y.

Zhang, Y.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

Z. Bomzon, M. Gu, and J. Shamir, Appl. Phys. Lett. 89, 241104 (2006).
[CrossRef]

J. Opt. A (1)

M. V. Berry, J. Opt. A 11, 094001 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Photon. (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[CrossRef]

Opt. Commun. (2)

X. Lian and B. Lü, Opt. Commun. 284, 5253 (2011).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, Opt. Commun. 283, 3585 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

X.-L. Wang, K. Lou, J. Chen, B. Gu, Y. L, and H.-T. Wang, Phys. Rev. A 83, 063813 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

X. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Proc. Roy. Soc. London Series A (1)

B. Richards and E. Wolf, Proc. Roy. Soc. London Series A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic focus system.

Fig. 2.
Fig. 2.

Focal fields of the AP beam (a) without and (b)–(e) with obstacles. From top to bottom, they correspond to the intensity distributions at the front focal plane, the focal plane and the yz plane respectively. The dimensions in the first, second, and third rows are 6mm×6mm, 4λ×4λ and 4λ×4λ, respectively.

Fig. 3.
Fig. 3.

Poynting vector field and transversal energy flow (black arrows) in the focal field of an AP beam obstructed by multisector. The top and bottom correspond to the cases with three and fivefold symmetric obstacles, and (a), (c) and (b), (d) correspond to the transversal and longitudinal components of the normalized Poynting vector field, respectively. The dimension of the focal plane is 4λ×4λ.

Fig. 4.
Fig. 4.

(a), (c) Ellipticity and (b), (d) orientations of the long axis (blue lines) of local polarization ellipses with the total intensity distribution at the focal plane. Top and bottom correspond to the cases with four and threefold symmetric obstacles. The dimension of the focal plane is 4×4λ2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E=[ExEyEz]=ikf2πΩsin(θ)cosθl0(θ)×[a[1+(cosθ1)cos2φ]+b[(cosθ1)cosφsinφ]a[(cosθ1)cosφsinφ]+b[1+(cosθ1)sin2φ]a[sinθcosφ]+b[sinθsinφ]]×eikn(zcosθ+rsinθcos(φϕ))dφdθ,
l0(θ)=exp[(sinθsinθmax)2]J1(2sinθsinθmax),
S=12Re[E*×H]=c22ωε0[Im(E*()E)+12×Im(E*×E)],
tan2ψ=S2/S1,sin2χ=S3/S0,

Metrics