Abstract

We study the modification of the decay rates of a single dipolar emitter positioned in the vicinity of metallic linear nanoantennas when higher-order plasmonic excitations are induced. We show that it is possible to effectively tune the enhancement or suppression of both the radiative and nonradiative decay processes by controlling the position and orientation of the dipole with respect to the antenna. Transverse polarization of a single emitter, with respect to the antenna axis, located at the center of the antenna activates dark antenna modes that modify dramatically both the intensity and the spectral features of the decay rates.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric antennas - a suitable platform for controlling magnetic dipolar emission

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua
Opt. Express 20(13) 13636-13650 (2012)

Multipole methods for nanoantennas design: applications to Yagi-Uda configurations

B. Stout, A. Devilez, B. Rolly, and N. Bonod
J. Opt. Soc. Am. B 28(5) 1213-1223 (2011)

Photon emission rate engineering using graphene nanodisc cavities

Anshuman Kumar, Kin Hung Fung, M. T. Homer Reid, and Nicholas X. Fang
Opt. Express 22(6) 6400-6415 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription