Abstract

We report on a new platform for all-optical switching based on inverse Raman scattering in liquids. Narrowband switching, which could be suitable for wavelength-division-multiplexed applications, is demonstrated using integrated liquid-core optical fiber infiltrated with both neat liquids (CCl4 and CS2) as well as an organic chromophore (β-carotene) dissolved in CCl4. Compared to standard glass optical fibers, these liquids have much larger Raman loss coefficients, which help reduce the pump power by at least an order of magnitude. Further improvements can be expected with the development of highly soluble organic compounds possessing large Raman cross sections.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).
    [CrossRef]
  2. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett. 13, 904 (1988).
    [CrossRef]
  3. G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
    [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef]
  5. W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964).
    [CrossRef]
  6. K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
    [CrossRef]
  7. H. Y. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 1413 (2011).
    [CrossRef]
  8. E. P. Ippen, Appl. Phys. Lett. 16, 303 (1970).
    [CrossRef]
  9. J. Stones, Appl. Phys. Lett. 26, 163 (1975).
    [CrossRef]
  10. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, Opt. Express 11, 2589 (2003).
    [CrossRef]
  11. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, Opt. Express 18, 6230 (2010).
    [CrossRef]
  12. P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
    [CrossRef]
  13. G. S. He, J. D. Bhawalkar, C. F. Zhao, C.-K. Park, and P. N. Prasad, Opt. Lett. 20, 2393 (1995).
    [CrossRef]
  14. T. Dallas and P. K. Dasgupta, Trends Anal. Chem. 23, 385 (2004).
    [CrossRef]
  15. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, http://arxiv.org/abs/1111.0251 .
  16. K. Kieu, J. Jones, and N. Peyghambarian, IEEE Photon. Technol. Lett. 22, 1521 (2010).
    [CrossRef]
  17. L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”
  18. M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
    [CrossRef]

2011 (2)

2010 (2)

2004 (2)

T. Dallas and P. K. Dasgupta, Trends Anal. Chem. 23, 385 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

2003 (1)

1998 (1)

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

1997 (1)

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

1995 (1)

1990 (1)

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

1988 (1)

1982 (1)

S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).
[CrossRef]

1975 (1)

J. Stones, Appl. Phys. Lett. 26, 163 (1975).
[CrossRef]

1970 (1)

E. P. Ippen, Appl. Phys. Lett. 16, 303 (1970).
[CrossRef]

1964 (1)

W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Bethge, J.

Bhawalkar, J. D.

Bjarklev, A.

Broeng, J.

Caldwell, S.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

Dallas, T.

T. Dallas and P. K. Dasgupta, Trends Anal. Chem. 23, 385 (2004).
[CrossRef]

Dasgupta, P. K.

T. Dallas and P. K. Dasgupta, Trends Anal. Chem. 23, 385 (2004).
[CrossRef]

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

DeSimone, A.

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Dong, S.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

Friberg, S. R.

Gaeta, A. L.

Genfa, Z.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

Griebner, U.

Hales, J. M.

K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
[CrossRef]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

He, G. S.

Hermann, D.

Herrmann, J.

Hou, T.

Husakou, A.

Ippen, E. P.

E. P. Ippen, Appl. Phys. Lett. 16, 303 (1970).
[CrossRef]

Jensen, S. M.

S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).
[CrossRef]

Jones, J.

K. Kieu, J. Jones, and N. Peyghambarian, IEEE Photon. Technol. Lett. 22, 1521 (2010).
[CrossRef]

Jones, W. J.

W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964).
[CrossRef]

Kieu, K.

K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
[CrossRef]

K. Kieu, J. Jones, and N. Peyghambarian, IEEE Photon. Technol. Lett. 22, 1521 (2010).
[CrossRef]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Kuzucu, O.

Larsen, T.

Lipson, M.

H. Y. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 1413 (2011).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Liu, S.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

Merzlyak, E.

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Mitschke, F.

Mullen, K.

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

Muller, G.

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

Noack, F.

Norwood, R. A.

K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
[CrossRef]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Park, C.-K.

Perry, J. W.

K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
[CrossRef]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Peyghambarian, N.

K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
[CrossRef]

K. Kieu, J. Jones, and N. Peyghambarian, IEEE Photon. Technol. Lett. 22, 1521 (2010).
[CrossRef]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Poruthoor, S. K.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

Prasad, P. N.

Rehahn, M.

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

Rumi, M.

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

Schneebeli, L.

K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, Opt. Express 19, 12532 (2011).
[CrossRef]

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Sfez, B. G.

Silberberg, Y.

Smith, P. S.

Stegeman, G. I.

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

Steinmeyer, G.

Stoicheff, B. P.

W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964).
[CrossRef]

Stones, J.

J. Stones, Appl. Phys. Lett. 26, 163 (1975).
[CrossRef]

Weiner, A. M.

Wen, H. Y.

Wright, E. M.

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

Zerbi, G.

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

Zhao, C. F.

Anal. Chem. (1)

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Liu, Anal. Chem. 70, 4661 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

E. P. Ippen, Appl. Phys. Lett. 16, 303 (1970).
[CrossRef]

J. Stones, Appl. Phys. Lett. 26, 163 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kieu, J. Jones, and N. Peyghambarian, IEEE Photon. Technol. Lett. 22, 1521 (2010).
[CrossRef]

J. Chem. Phys. (1)

M. Rumi, G. Zerbi, K. Mullen, G. Muller, and M. Rehahn, J. Chem. Phys. 106, 24 (1997).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

Phys. Rev. Lett. (1)

W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964).
[CrossRef]

Trends Anal. Chem. (1)

T. Dallas and P. K. Dasgupta, Trends Anal. Chem. 23, 385 (2004).
[CrossRef]

Other (2)

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, http://arxiv.org/abs/1111.0251 .

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian are preparing a manuscript to be called “Measurement of the Raman gain coefficient via inverse Raman scattering.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. EDFA, erbium-doped fiber amplifier; HNLF, highly nonlinear fiber; ML, mode locked; WDM, wavelength division multiplexer; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

IRS switching using an i-LCOF filled with CCl4. (a) Power dependence of the IRS response. (b) Loss spectrum tuned by changing the pump laser wavelength.

Fig. 3.
Fig. 3.

IRS switching using an i-LCOF filled with neat CS2.

Fig. 4.
Fig. 4.

IRS switching using an i-LCOF filled with β-carotene dissolved in CCl4 and 5% CS2 by volume.

Metrics