Abstract

Lasing action from a dispersion of nanoparticles is reported for the first time to our knowledge. The nanoparticles are Nd2O3 modified with dimethyldichlorosilane (DMDCS) in dimethylsulfoxide. The laser was pumped with a pulsed laser at 802 nm and yielded 2.7 mJ with a slope efficiency of 50%. This was compared to a standard Nd-doped phosphate glass that yielded very similar results in the same setup.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Morgan, J. W. Keto, and T. Ditmire, J. Opt. Soc. Am. B 28, 2726 (2011).
  2. X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, Opt. Express 17, 5885 (2009).
    [CrossRef]
  3. L. Xu, S. Y. Zhang, and J. Q. Xu, Laser Phys. Lett. 7, 303 (2010).
    [CrossRef]
  4. J. W. Stouwdam and F. C. J. M. Van Veggel, Nano Lett. 2, 733 (2002).
    [CrossRef]
  5. K. Dogaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007).
    [CrossRef]
  6. A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
    [CrossRef]
  7. T. Grzyb and S. Lis, Inorg. Chem. 50, 8112 (2011).
  8. R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
    [CrossRef]
  9. J. A. Caird, A. J. Ramponi, and P. R. Staver, J. Opt. Soc. Am. B 8, 1391 (1991).
    [CrossRef]

2011 (2)

R. D. Morgan, J. W. Keto, and T. Ditmire, J. Opt. Soc. Am. B 28, 2726 (2011).

T. Grzyb and S. Lis, Inorg. Chem. 50, 8112 (2011).

2010 (1)

L. Xu, S. Y. Zhang, and J. Q. Xu, Laser Phys. Lett. 7, 303 (2010).
[CrossRef]

2009 (1)

2007 (2)

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

K. Dogaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007).
[CrossRef]

2006 (1)

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

2002 (1)

J. W. Stouwdam and F. C. J. M. Van Veggel, Nano Lett. 2, 733 (2002).
[CrossRef]

1991 (1)

Bensalah, A.

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

Boyd, R. W.

Caird, J. A.

Chi, Y.

Ditmire, T.

Dogaleva, K.

Dong, G.

Ford, H.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Gredin, P.

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

Grzyb, T.

T. Grzyb and S. Lis, Inorg. Chem. 50, 8112 (2011).

Huang, W.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Keto, J. W.

Lis, S.

T. Grzyb and S. Lis, Inorg. Chem. 50, 8112 (2011).

Liu, S.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Liu, X.

Milonni, P. W.

Morgan, R. D.

Mortier, M.

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

Patriarche, G.

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

Peng, B.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Qiao, Y.

Qiu, J.

Qiu, X.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Ramponi, A. J.

Staver, P. R.

Stouwdam, J. W.

J. W. Stouwdam and F. C. J. M. Van Veggel, Nano Lett. 2, 733 (2002).
[CrossRef]

Tang, G.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Van Veggel, F. C. J. M.

J. W. Stouwdam and F. C. J. M. Van Veggel, Nano Lett. 2, 733 (2002).
[CrossRef]

Vivien, D.

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

Wei, W.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Wu, E.

Xu, J. Q.

L. Xu, S. Y. Zhang, and J. Q. Xu, Laser Phys. Lett. 7, 303 (2010).
[CrossRef]

Xu, L.

L. Xu, S. Y. Zhang, and J. Q. Xu, Laser Phys. Lett. 7, 303 (2010).
[CrossRef]

Xu, X.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Yu, K.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Yu, R.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Zeng, H.

Zhang, S. Y.

L. Xu, S. Y. Zhang, and J. Q. Xu, Laser Phys. Lett. 7, 303 (2010).
[CrossRef]

Adv. Mater. (1)

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, Adv. Mater. 19, 838 (2007).
[CrossRef]

Inorg. Chem. (1)

T. Grzyb and S. Lis, Inorg. Chem. 50, 8112 (2011).

J. Opt. Soc. Am. B (3)

J. Solid State Chem. (1)

A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).
[CrossRef]

Laser Phys. Lett. (1)

L. Xu, S. Y. Zhang, and J. Q. Xu, Laser Phys. Lett. 7, 303 (2010).
[CrossRef]

Nano Lett. (1)

J. W. Stouwdam and F. C. J. M. Van Veggel, Nano Lett. 2, 733 (2002).
[CrossRef]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Photograph of the small (left cuvette) and large (right cuvette) 5 wt. % Nd2O3 dispersions. (b) Transmitting electron microscope measurement of the small nanoparticles.

Fig. 2.
Fig. 2.

Extinction of (a) 5 wt. % small nanoparticle dispersion and 2.2 wt. % Nd:glass disk, (b) 5 wt. % large and small nanoparticle dispersions.

Fig. 3.
Fig. 3.

Temporal fluorescence signal of (a) the nanoparticle dispersion and (b) the 4% Nd:glass disk.

Fig. 4.
Fig. 4.

Fluorescence spectrum of the nanoparticle dispersion and Nd:glass.

Fig. 5.
Fig. 5.

Experimental setup for the gain measurement.

Fig. 6.
Fig. 6.

Intensity of the 1053 nm seeder at the PD.

Fig. 7.
Fig. 7.

Nanoparticle dispersion laser setup.

Fig. 8.
Fig. 8.

Output energy from the nanoparticle dispersion laser for different OCs versus increasing the pump energy.

Fig. 9.
Fig. 9.

Temporal profile of the pump laser (black) and the nanoparticle dispersion laser (gray).

Fig. 10.
Fig. 10.

(a) Output energy and (b) spectra of the nanoparticle dispersion laser and the Nd:glass laser for an 80% OC.

Metrics