Abstract

In this Letter, we propose a novel method based on the inhomogeneous Brillouin gain saturation to reduce the gain bandwidth significantly below its natural value. Based on our first experiments, we report a decrease of the bandwidth in a standard single mode fiber down to 3 MHz.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
    [CrossRef]
  2. A. Yeniay, J.-M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]
  3. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
    [CrossRef]
  4. T. Schneider, Electron. Lett. 41, 1234 (2005).
    [CrossRef]
  5. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, IEEE Photon. Technol. Lett. 23, 1118 (2011).
    [CrossRef]
  6. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, Appl. Opt. 50, 4252 (2011).
    [CrossRef]
  7. A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.
  8. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, Opt. Express 19, 8565 (2011).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  10. Y. Takushima and K. Kikuchi, Opt. Lett. 20, 34 (1995).
    [CrossRef]
  11. V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
    [CrossRef]
  12. A. A. Juarez, R. Vilaseca, Z. Zhu, and D. J. Gauthier, Opt. Lett. 33, 2374 (2008).
    [CrossRef]
  13. S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 29401 (2001).
    [CrossRef]

2011 (3)

2008 (1)

2005 (2)

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

T. Schneider, Electron. Lett. 41, 1234 (2005).
[CrossRef]

2002 (1)

2001 (1)

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 29401 (2001).
[CrossRef]

2000 (1)

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef]

1995 (1)

1972 (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Delavaux, J.-M.

Domingo, J. M. S.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Facchini, M.

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

Fellay, A.

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

Gauthier, D. J.

Harrison, R. G.

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef]

Heras, C. D.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Ippen, E. P.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Jamshidi, K.

Juarez, A. A.

Kikuchi, K.

Kovalev, V. I.

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef]

Pelayo, J.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Pellejer, E.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Perez Garcia, J.

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

Preussler, S.

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, IEEE Photon. Technol. Lett. 23, 1118 (2011).
[CrossRef]

Preußler, S.

Preussler, S.

Randoux, S.

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 29401 (2001).
[CrossRef]

Robert, P.

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

Scandale, W.

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

Schneider, T.

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, Opt. Express 19, 8565 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, IEEE Photon. Technol. Lett. 23, 1118 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, Appl. Opt. 50, 4252 (2011).
[CrossRef]

T. Schneider, Electron. Lett. 41, 1234 (2005).
[CrossRef]

Stolen, R. H.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Takushima, Y.

Thévenaz, L.

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

Toulouse, J.

Vilaseca, R.

Villuendas, F.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Wiatrek, A.

Yeniay, A.

Zemmouri, J.

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 29401 (2001).
[CrossRef]

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Electron. Lett. (1)

T. Schneider, Electron. Lett. 41, 1234 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, IEEE Photon. Technol. Lett. 23, 1118 (2011).
[CrossRef]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef]

S. Randoux and J. Zemmouri, Phys. Rev. Lett. 88, 29401 (2001).
[CrossRef]

Other (2)

A. Fellay, L. Thévenaz, J. Perez Garcia, M. Facchini, W. Scandale, and P. Robert, in 15th Optical Fiber Sensors Conference Technical Digest (2002), p. 301.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The fiber input signal as a superposition of the signal under test (solid black line) and the aperture signal (dashed blue line).

Fig. 2.
Fig. 2.

Simulated gain distributions without saturating aperture (solid black line) and with saturating aperture at different gap widths (colored lines).

Fig. 3.
Fig. 3.

Experimental setup. (Scan: scanning signal; MZM: Mach-Zehnder modulator; Sat: saturating signal source; EDFA: Erbium-doped fiber amplifier; PC: polarization controller; SSMF: standard single mode fiber; PD: photo detector; OSA: optical spectrum analyzer.)

Fig. 4.
Fig. 4.

Measured gain distributions without saturating aperture (solid black line) and with saturating aperture at different gap widths (colored lines). All graphs are normalized to the maximum of the natural SBS gain (black line). In the inset, the fiber input signal for an aperture gap width of 3 MHz is shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PPz=(g0(ΓB/2)2(ωBω)2+(ΓB/2)2PS+α)PP,
PSz=(g0(ΓB/2)2(ωBω)2+(ΓB/2)2PPα)PS.
ΓB=αava,

Metrics