Abstract

A narrow-linewidth cw 5μm source based on difference frequency generation of a 1.3μm quantum dot external cavity diode laser and a cw Nd:YAG laser in periodically poled MgO:LiNbO3 has been developed and evaluated for spectroscopic applications. The source can be tuned to any frequency in the 5.095.13μm range with an output power up to 0.1mW, and in the 5.425.48μm range with sub-microwatt output. The output frequency is stabilized and its value determined by measuring the frequency of the two lasers with a remotely located frequency comb. A frequency instability of less than 4kHz for long integration times and a linewidth smaller than 700kHz were obtained.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Krems, W. Stwalley, and B. Friedrich, eds., Cold Molecules: Theory, Experiment, Application (CRC, 2009).
  2. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef]
  3. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, Opt. Lett. 36, 2275 (2011).
    [CrossRef]
  4. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Eng. 49, 111122 (2010).
    [CrossRef]
  5. D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, Opt. Express 19, 17520 (2011).
    [CrossRef]
  6. E. V. Kovalchuk, T. Schuldt, and A. Peters, Opt. Lett. 30, 3141 (2005).
    [CrossRef]
  7. D. Mazzotti, P. Cancio, G. Giusfredi, and P. De Natale, Opt. Lett. 30, 997 (2005).
    [CrossRef]
  8. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, Opt. Express 16, 8242 (2008).
    [CrossRef]
  9. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Express 17, 9582 (2009).
    [CrossRef]
  10. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Lett. 35, 3616 (2010).
    [CrossRef]
  11. Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
    [CrossRef]
  12. N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
    [CrossRef]
  13. U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

2011 (2)

2010 (2)

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Lett. 35, 3616 (2010).
[CrossRef]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Eng. 49, 111122 (2010).
[CrossRef]

2009 (1)

2008 (2)

P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, Opt. Express 16, 8242 (2008).
[CrossRef]

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

2007 (1)

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

2005 (2)

2004 (1)

Bartalini, S.

Borodin, A.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Borri, S.

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Eng. 49, 111122 (2010).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Lett. 35, 3616 (2010).
[CrossRef]

Bressel, U.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Cancio, P.

Castrillo, A.

De Natale, P.

Eisele, Ch.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Ernsting, I.

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Gagliardi, G.

Galli, I.

Galzerano, G.

Gambetta, A.

Gatti, D.

Gianfrani, L.

Giusfredi, G.

Gohle, C.

Gubenko, A.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Hansen, M.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Holzwarth, R.

Huke, P.

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

Keilmann, F.

Kovalchuk, E. V.

Kovsh, A.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Krestnikov, I.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Laporta, P.

Livshits, D.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Maddaloni, P.

Malara, P.

Marangoni, M.

Mazzotti, D.

Mikhrin, S.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Nevsky, Yu.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Okhapkin, M.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

Peters, A.

Rinkleff, R.-H.

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

Schiller, S.

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Schuldt, T.

Schunemann, P. G.

Shen, J.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Sorokin, E.

Sorokina, I. T.

Strauss, N.

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

Vodopyanov, K. L.

Wicht, A.

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

Appl. Phys. B (2)

Yu. Nevsky, U. Bressel, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, Appl. Phys. B 92, 501 (2008).
[CrossRef]

N. Strauss, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

Opt. Eng. (1)

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, Opt. Eng. 49, 111122 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Other (2)

R. Krems, W. Stwalley, and B. Friedrich, eds., Cold Molecules: Theory, Experiment, Application (CRC, 2009).

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett., submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup: λ/2 retardation plates; OI, optical isolators; PBS, polarizing beam splitter cubes; F, single-mode optical fibers; IM, intensity modulator; CH, chopper wheel (for lock-in detection); PD, photodetector; P, prism; L, lenses; G, r.f. oscillator; PZT, mirror actuator; D, beam dump; M, mixer.

Fig. 2.
Fig. 2.

Beat notes between the 1344nm diode laser and the frequency comb and between the 1064nm Nd:YAG laser and a narrow-linewidth (10kHz) Nd:YAG laser (ILF100, Institute for Laser Physics, Novosibirsk).

Fig. 3.
Fig. 3.

Frequency traces of the Nd:YAG laser and of the diode laser, measured by the frequency comb over more than 1h and the corresponding frequency trace of the generated difference frequency at 5.1μm. The DFG frequency trace has a frequency offset of Δ=+140kHz for illustration purpose. Note the different vertical scales.

Fig. 4.
Fig. 4.

Allan deviation of the difference frequency values at 5.1μm.

Fig. 5.
Fig. 5.

DFG output power and the cavity length control voltage during a typical frequency sweep using the intensity modulator tuned to the negative sideband “fs”.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γf=(Γ10642+Γ1344comb2Γcomb2)1/20.68MHz.

Metrics