Abstract

A novel integrable modulator consisting of a polarization modulator and a polarizer is proposed for constructing a high-performance analog photonic link. By adjusting a polarization controller placed before the modulator, both amplitude modulation and phase modulation with adjustable ratio between them are implemented. This feature is used to shift the peak of the frequency response of a dispersive link to any desired frequency, so the dispersion-induced power fading around the frequency is compensated. A proof-of-concept experiment is performed. The compensation of the dispersion-induced power fading in the proposed analog photonic link increases the spur-free dynamic range as large as 12.5 dB.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, J. Lightwave Technol. 29, 1182 (2011).
    [CrossRef]
  2. J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
    [CrossRef]
  3. J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
    [CrossRef]
  4. S. R. Blais and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2230 (2006).
    [CrossRef]
  5. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
    [CrossRef]
  6. C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, J. Lightwave Technol. 25, 1602 (2007).
    [CrossRef]
  7. B. Hraimel, X. P. Zhang, Y. Q. Pei, K. Wu, T. J. Liu, T. F. Xu, and Q. H. Nie, J. Lightwave Technol. 29, 775 (2011).
    [CrossRef]
  8. Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, submitted for publication.
  9. G. H. Nguyen, J. Poette, and B. Cabon, J. Lightwave Technol. 29, 1753 (2011).
    [CrossRef]
  10. S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, Opt. Lett. 36, 546 (2011).
    [CrossRef]
  11. S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
    [CrossRef]
  12. B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
    [CrossRef]
  13. J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
    [CrossRef]

2011 (4)

2010 (1)

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

2009 (1)

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

2007 (3)

2006 (1)

S. R. Blais and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

1997 (2)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Blais, S. R.

S. R. Blais and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

Bucholtz, F.

Cabon, B.

Campillo, A. L.

Devgan, P. S.

Dexter, J. L.

Haas, B. M.

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

Hraimel, B.

Hu, X. D.

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

Lee, K. L.

Li, J.

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

Li, S. Y.

Lim, C.

Liu, T. J.

McKinney, J. D.

Murphy, T. E.

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

Nguyen, G. H.

Nie, Q. H.

Ning, T. G.

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

Nirmalathas, A.

Novak, D.

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, J. Lightwave Technol. 25, 1602 (2007).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Pan, S. L.

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, submitted for publication.

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

Pei, L.

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

Pei, Y. Q.

Poette, J.

Qi, C. H.

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

Tang, Z. Z.

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, submitted for publication.

Urick, V. J.

Wang, Q.

Waterhouse, R.

Williams, K. J.

Wu, K.

Xu, T. F.

Yao, J. P.

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
[CrossRef]

S. R. Blais and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, submitted for publication.

Zeng, F.

Zhang, H. Y.

Zhang, X. P.

Zheng, X. P.

Zhou, B. K.

Zhou, Q.

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

Electron. Lett. (1)

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010).
[CrossRef]

S. R. Blais and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009).
[CrossRef]

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Lett. (1)

Other (1)

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Integrable modulator consisting of a PolM and a polarizer.

Fig. 2.
Fig. 2.

Experiment setup of the polarization-modulated APL. LD, laser diode; PC, polarization controller; PBS, polarization beam splitter; SMF, single-mode fiber; PD, photodetector; ESA, electrical spectrum analyzer.

Fig. 3.
Fig. 3.

Frequency responses of the conventional IM-based link (solid) and the proposed APL (dashed) after transmission (a) over 20 km SMF around 15 GHz, (b) over 20 km SMF around 34 GHz, (c) over 40 km SMF around 15 GHz, and (d) over 40 km SMF around 28 GHz.

Fig. 4.
Fig. 4.

Eye diagrams and electrical spectra of the data-modulated microwave signals transmitted in (a) the conventional IM-based back-to-back link, (b) the conventional IM-based link with 20 km SMF, and (c) the proposed APL with 20 km SMF. (d) Measured fundamental and third-order intermodulation distortion (IMD3) output powers as a function of the input power for the conventional IM-based link with 20 km SMF (dotted line) and the proposed APL with 20 km SMF (solid line).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ExEy]=[cosαexp[jωct+jγcosωmt+jφ0]sinαexp[jωctjγcosωmt]],
E(t)=22(Ex+Ey)=22ejωct(cosαejγcosωmt+jφ0+sinαejγcosωmt)=22ejωct[cosαejφ0/2cos(γcosωmt+φ0/2)+(sinαcosα)ejγcosωmt].
E(t)=22ejωct[J0(γ)(ej(φ0+θ0)cosα+ejθ0sinα)+J1(γ)cosα(ej(ωmt+π2+φ0+θ+1)ej(ωmtπ2+φ0+θ1))+J1(γ)sinα(ej(ωmt+3π2+θ+1)ej(ωmt3π2+θ1))]
{θ0=zβ(ωc)θ1=zβ(ωc)τ0ωm+12Dωωm2θ+1=zβ(ωc)+τ0ωm+12Dωωm2,
iPD|E(t)|2=2J0J1[sin2αcos(12Dωωm2)sinφ0+cos2αsin(12Dωωm2)]cos[ωm(tτ0)].
iPD2J0J1sin(2α+12Dωωm2)cos[ωm(tτ0)].
2α+12Dωωm2=(2k+1)π2,k=0,±1,±2.

Metrics