Abstract

We present an in-process measurement of surface roughness by combining an optical probe of laser-scattering phenomena and adaptive optics for aberration correction. Measurement results of five steel samples with a roughness ranging from 0.2 to 3.125 μm demonstrate excellent correlation between the peak power and average roughness with a correlation coefficient (R2) of 0.9967. The proposed adaptive-optics-assisted system is in good agreement with the stylus method, and error values of less than 8.7% are obtained for average sample roughness in the range of 0.265 to 1.119 μm. The proposed system can be used as a rapid in-process roughness monitor/estimator to further increase the precision and stability of manufacturing processes in situ.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, J. Lin, and Z. Liu, Chin. Opt. Lett. 8, 966 (2010).
    [CrossRef]
  2. G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao, and Y. Zhang, Chin. Opt. Lett. 6, 424 (2008).
    [CrossRef]
  3. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, Opt. Lett. 35, 196 (2010).
    [CrossRef]
  4. L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
    [CrossRef]
  5. U. Persson, J. Mater. Process. Technol. 180, 233 (2006).
    [CrossRef]
  6. K. C. Hsu and Y. K. Fuh, Adv. Mater. Res. 154, 1125 (2011).
    [CrossRef]
  7. C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
    [CrossRef]
  8. S. Wang, Y. Tian, C. J. Tay, and C. Quan, Appl. Opt. 42, 1318 (2003).
    [CrossRef]
  9. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, Opt. Express 14, 8013 (2006).
    [CrossRef]
  10. T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
    [CrossRef]
  11. M. Hattori and S. Komatsu, Opt. Rev. 9, 126 (2002).
    [CrossRef]
  12. C. Kuo and C. Chao, Opt. Lasers Eng. 48, 1166 (2010).
    [CrossRef]
  13. C. Kuo and Y. Chen, Opt. Lasers Eng. 49, 410 (2011).
    [CrossRef]
  14. H. Y. Kim, Y. F. Shen, and J. H. Ahn, J. Mater. Process. Technol. 130–131, 662 (2002).
    [CrossRef]

2011

K. C. Hsu and Y. K. Fuh, Adv. Mater. Res. 154, 1125 (2011).
[CrossRef]

C. Kuo and Y. Chen, Opt. Lasers Eng. 49, 410 (2011).
[CrossRef]

2010

C. Kuo and C. Chao, Opt. Lasers Eng. 48, 1166 (2010).
[CrossRef]

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, J. Lin, and Z. Liu, Chin. Opt. Lett. 8, 966 (2010).
[CrossRef]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, Opt. Lett. 35, 196 (2010).
[CrossRef]

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

2008

2006

2004

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

2003

2002

M. Hattori and S. Komatsu, Opt. Rev. 9, 126 (2002).
[CrossRef]

H. Y. Kim, Y. F. Shen, and J. H. Ahn, J. Mater. Process. Technol. 130–131, 662 (2002).
[CrossRef]

1999

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Ahn, J. H.

H. Y. Kim, Y. F. Shen, and J. H. Ahn, J. Mater. Process. Technol. 130–131, 662 (2002).
[CrossRef]

Artal, P.

Bifano, T. G.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Cánovas, C.

Cao, Z.

Chan, K. C.

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

Chao, C.

C. Kuo and C. Chao, Opt. Lasers Eng. 48, 1166 (2010).
[CrossRef]

Chen, D.

Chen, Y.

C. Kuo and Y. Chen, Opt. Lasers Eng. 49, 410 (2011).
[CrossRef]

Dai, Y.

Ding, Z.

Fuh, Y. K.

K. C. Hsu and Y. K. Fuh, Adv. Mater. Res. 154, 1125 (2011).
[CrossRef]

Guan, C.

Hattori, M.

M. Hattori and S. Komatsu, Opt. Rev. 9, 126 (2002).
[CrossRef]

Horenstein, M. N.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Hsu, K. C.

K. C. Hsu and Y. K. Fuh, Adv. Mater. Res. 154, 1125 (2011).
[CrossRef]

Hu, L.

Kim, H. Y.

H. Y. Kim, Y. F. Shen, and J. H. Ahn, J. Mater. Process. Technol. 130–131, 662 (2002).
[CrossRef]

Komatsu, S.

M. Hattori and S. Komatsu, Opt. Rev. 9, 126 (2002).
[CrossRef]

Krishnamoorthy Mali, R.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Kuo, C.

C. Kuo and Y. Chen, Opt. Lasers Eng. 49, 410 (2011).
[CrossRef]

C. Kuo and C. Chao, Opt. Lasers Eng. 48, 1166 (2010).
[CrossRef]

Lee, T. K.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

Li, D.

Lin, J.

Liu, Z.

Lui, H.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

Manzanera, S.

Markhvida, I.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

McLean, D. I.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

Mira, A.

Mu, Q.

Ng, B. L.

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

Perreault, J.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

Persson, U.

U. Persson, J. Mater. Process. Technol. 180, 233 (2006).
[CrossRef]

Prieto, P. M.

Quan, C.

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

S. Wang, Y. Tian, C. J. Tay, and C. Quan, Appl. Opt. 42, 1318 (2003).
[CrossRef]

Rao, C.

Rao, X.

Shen, Y. F.

H. Y. Kim, Y. F. Shen, and J. H. Ahn, J. Mater. Process. Technol. 130–131, 662 (2002).
[CrossRef]

Shi, G.

Tay, C. J.

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

S. Wang, Y. Tian, C. J. Tay, and C. Quan, Appl. Opt. 42, 1318 (2003).
[CrossRef]

Tchvialeva, L.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

Tian, Y.

Wang, L.

Wang, S.

Wang, S. H.

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

Xuan, L.

Zeng, H.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

Zhang, Y.

Zhu, L.

Adv. Mater. Res.

K. C. Hsu and Y. K. Fuh, Adv. Mater. Res. 154, 1125 (2011).
[CrossRef]

Appl. Opt.

Chin. Opt. Lett.

IEEE J. Sel. Top. Quantum Electron.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, IEEE J. Sel. Top. Quantum Electron. 5, 83 (1999).
[CrossRef]

J. Mater. Process. Technol.

H. Y. Kim, Y. F. Shen, and J. H. Ahn, J. Mater. Process. Technol. 130–131, 662 (2002).
[CrossRef]

U. Persson, J. Mater. Process. Technol. 180, 233 (2006).
[CrossRef]

Opt. Express

Opt. Laser Technol.

C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, and K. C. Chan, Opt. Laser Technol. 36, 535 (2004).
[CrossRef]

Opt. Lasers Eng.

L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, Opt. Lasers Eng. 48, 774 (2010).
[CrossRef]

C. Kuo and C. Chao, Opt. Lasers Eng. 48, 1166 (2010).
[CrossRef]

C. Kuo and Y. Chen, Opt. Lasers Eng. 49, 410 (2011).
[CrossRef]

Opt. Lett.

Opt. Rev.

M. Hattori and S. Komatsu, Opt. Rev. 9, 126 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of the measuring device.

Fig. 2.
Fig. 2.

Peak power as a function of measured time under the incident angle of 90°.

Fig. 3.
Fig. 3.

(a) Schematic diagram of the experimental setup for measuring the surface roughness integrated with the adaptive optics system. (b) Peak power as a function of measuring the metal surface of Ra=0.2μm under induced turbulence with and without AO corrections.

Fig. 4.
Fig. 4.

Zernike coefficient values for the twenty-first polynomials with and without AO aberration corrections under dynamic turbulence. Insets, wavefront maps for responses with and without AO, respectively.

Fig. 5.
Fig. 5.

(a) Surface roughness as a function of peak power for both systems with and without AO correction. (b) Surface roughness obtained by the proposed AO-assisted approach and comparison with the stylus method.

Metrics