Abstract

Based on image inverting interference combined with phase modulation, we theoretically demonstrate that the doughnut focal spot can readily be manipulated, and either shrinkage or expansion of size of the central dark spot is possible in a large scale (peak-to-peak value: 0.555λ0.830λ, or 93.3%140.8% compared with the standard one). As the interference and phase modulation can both be achieved by a double Porro prism, it is feasible to introduce this approach into optical tweezers to improve their performance. As much as 33.9% intensity of stimulated emission depletion (STED) beam can be reduced if the further optimized configuration is utilized in STED microscopy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Airy, Trans. Cambridge Philos. Soc. 5, 283 (1835).
  2. C. J. R. Sheppard, W. Gong, and K. Si, Micron 42, 353 (2011).
    [CrossRef]
  3. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004).
    [CrossRef]
  4. S. W. Hell, Science 316, 1153 (2007).
    [CrossRef]
  5. D. W. Zhang and X. C. Yuan, Opt. Lett. 28, 740 (2003).
    [CrossRef]
  6. X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).
    [CrossRef]
  7. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  8. C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
    [CrossRef]
  9. D. Weigel, R. Foerster, H. Babovsky, A. Kiessling, and R. Kowarschik, Opt. Express 19, 26451 (2011).
    [CrossRef]
  10. N. Sandeau and H. Giovannini, J. Opt. Soc. Am. A 23, 1089 (2006).
    [CrossRef]
  11. K. Wicker, S. Sindbert, and R. Heintzmann, Opt. Express 17, 15491 (2009).
    [CrossRef]
  12. N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
    [CrossRef]
  13. C. J. R. Sheppard, Opt. Lett. 25, 1660 (2000).
    [CrossRef]
  14. B. Richards and E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358 (1959).
    [CrossRef]
  15. X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
    [CrossRef]
  16. M. Dyba and S. W. Hell, Phys. Rev. Lett. 88 (2002).
    [CrossRef]
  17. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schoenle, and S. W. Hell, Opt. Express 16, 4154 (2008).
    [CrossRef]

2012 (1)

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

2011 (2)

2010 (2)

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).
[CrossRef]

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
[CrossRef]

2009 (3)

K. Wicker, S. Sindbert, and R. Heintzmann, Opt. Express 17, 15491 (2009).
[CrossRef]

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

2006 (1)

2004 (1)

2003 (1)

2002 (1)

M. Dyba and S. W. Hell, Phys. Rev. Lett. 88 (2002).
[CrossRef]

2000 (1)

1959 (1)

B. Richards and E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358 (1959).
[CrossRef]

1835 (1)

G. B. Airy, Trans. Cambridge Philos. Soc. 5, 283 (1835).

Airy, G. B.

G. B. Airy, Trans. Cambridge Philos. Soc. 5, 283 (1835).

Babovsky, H.

Choudhury, A.

Dyba, M.

M. Dyba and S. W. Hell, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Ferrand, P.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

Foerster, R.

Giovannini, H.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

N. Sandeau and H. Giovannini, J. Opt. Soc. Am. A 23, 1089 (2006).
[CrossRef]

Gong, W.

C. J. R. Sheppard, W. Gong, and K. Si, Micron 42, 353 (2011).
[CrossRef]

Hao, X.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

Hao, X. A.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
[CrossRef]

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).
[CrossRef]

Harke, B.

Heintzmann, R.

Hell, S. W.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schoenle, and S. W. Hell, Opt. Express 16, 4154 (2008).
[CrossRef]

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

M. Dyba and S. W. Hell, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Keller, J.

Kiessling, A.

Kowarschik, R.

Kuang, C.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

Kuang, C. F.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
[CrossRef]

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).
[CrossRef]

Liu, X.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
[CrossRef]

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).
[CrossRef]

Liu, Y.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

Luo, D.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358 (1959).
[CrossRef]

Rigneault, H.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

Sandeau, N.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

N. Sandeau and H. Giovannini, J. Opt. Soc. Am. A 23, 1089 (2006).
[CrossRef]

Schoenle, A.

Sheppard, C. J. R.

Si, K.

C. J. R. Sheppard, W. Gong, and K. Si, Micron 42, 353 (2011).
[CrossRef]

Sindbert, S.

Ullal, C. K.

Wang, T. T.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
[CrossRef]

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).
[CrossRef]

Wawrezinieck, L.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

Weigel, D.

Westphal, V.

Wicker, K.

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358 (1959).
[CrossRef]

Yuan, X. C.

Zhan, Q.

Zhang, D. W.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

J. Eur. Opt. Soc. Rapid Pub. (1)

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, J. Eur. Opt. Soc. Rapid Pub. 4, 09040 (2009).
[CrossRef]

J. Opt. (1)

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Micron (1)

C. J. R. Sheppard, W. Gong, and K. Si, Micron 42, 353 (2011).
[CrossRef]

Opt. Commun. (1)

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, Opt. Commun. 285, 402 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. Dyba and S. W. Hell, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Proc. R. Soc. Lond. Ser. A (1)

B. Richards and E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358 (1959).
[CrossRef]

Science (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

Trans. Cambridge Philos. Soc. (1)

G. B. Airy, Trans. Cambridge Philos. Soc. 5, 283 (1835).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Configuration of the system. (b) Structure of a double Porro prism and the optical path. PP, phase plate; BS, beam splitter; M, mirror; OL, objective lens; IIO, image inverting optics.

Fig. 2.
Fig. 2.

Intensity distribution of a doughnut focal spot. (a)–(c) Two-dimensional intensity distribution in the focal plane; (a) is generated in the standard case, and (b) and (c) are generated by the method proposed in this Letter with phase diversities of (b) 0 and (c)  π . (d) Intensity distribution of the focal spot in cross section along the radial direction. (e) Phase diversity versus dark spot size.

Fig. 3.
Fig. 3.

Manipulation scale of the method when the beam shape varies. The intensity modulated beam (the last column) is the one that propagates through an annular aperture with the inner versus outer radius as 0.85 1 . The solid rectangles in the figure are the dark spot sizes obtained in the standard case, while the error bars are the corresponding manipulation scales.

Fig. 4.
Fig. 4.

Intensity versus size of dark spot in different phase diversity situations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( θ , φ ) = I 1 · E noninverted ( θ , φ ) + I 2 · E inverted ( θ , φ ) e i α = I 1 · E noninverted ( θ , φ ) + I 2 · E noninverted ( θ , φ ) e i α ,
E ( r 2 , φ 2 , z 2 ) = i C Ω sin ( θ ) · E 0 ( θ , φ ) · A ( θ , φ ) · [ p x p y p z ] · e i Δ β ( θ , φ ) · e i k n ( z 2 cos θ + r 2 sin θ cos ( φ φ 2 ) ) d θ d φ ,
d 1 / ( a ς )

Metrics