Abstract

A postcompensation technique for nonlinearity of a Mach–Zehnder modulator in a radio-over-fiber (ROF) system is proposed and experimentally demonstrated based on second-order optical sideband processing and optical carrier band attenuation. The phase of the second-order optical sideband is shifted to suppress the third-order intermodulation distortion (IMD3) in a direct detection ROF link. The optical carrier band is attenuated to make two kinds of origins of IMD3 have equal intensity and cancel each other out. A spurious-free dynamic range of 124.8dB·Hz2/3 is achieved, which is about 25 dB more than that without compensation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
    [Crossref]
  2. D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.
  3. A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
    [Crossref]
  4. G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
    [Crossref]
  5. S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
    [Crossref]
  6. C. Lim, A. Nirmalathas, L. Ka-Lun, D. Novak, and R. Waterhouse, J. Lightwave Technol. 25, 1602 (2007).
    [Crossref]
  7. S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
    [Crossref]
  8. S.-K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, Opt. Express 19, 7865 (2011).
    [Crossref]
  9. B. Masella, B. Hraimel, and X. Zhang, J. Lightwave Technol. 27, 3034 (2009).
    [Crossref]
  10. E. I. Ackerman, in 1999 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1999), Vol. 3, pp. 999–1002.
  11. L. M. Johnson and H. V. Roussell, Opt. Lett. 13, 928 (1988).
    [Crossref]
  12. S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
    [Crossref]

2011 (1)

2010 (2)

S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[Crossref]

S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
[Crossref]

2009 (2)

B. Masella, B. Hraimel, and X. Zhang, J. Lightwave Technol. 27, 3034 (2009).
[Crossref]

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

2007 (2)

1994 (1)

G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
[Crossref]

1990 (1)

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[Crossref]

1988 (1)

Ackerman, E. I.

E. I. Ackerman, in 1999 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1999), Vol. 3, pp. 999–1002.

Beacham, K.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.

Betts, G. E.

G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[Crossref]

Crawford, L.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
[Crossref]

Dalton, L. R.

de Ridder, R. M.

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[Crossref]

Ferreira, A.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

Fetterman, H. R.

Fonseca, D.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

Hraimel, B.

Johnson, L. M.

Ka-Lun, L.

Kim, S.-K.

Korotky, S. K.

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[Crossref]

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[Crossref]

Lim, C.

Liu, W.

Masella, B.

Monteiro, P.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

Nirmalathas, A.

Novak, D.

Pei, Q.

Ribeiro, R.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

Roussell, H. V.

Silveira, T.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

Wake, D.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.

Waterhouse, R.

Webster, M.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
[Crossref]

Wimpenny, G.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[Crossref]

Zhang, X.

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[Crossref]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Li, X. Zheng, H. Zhang, and B. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[Crossref]

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 21, 438 (2009).
[Crossref]

IEEE Trans. Microwave Theor. Tech. (1)

G. E. Betts, IEEE Trans. Microwave Theor. Tech. 42, 2642 (1994).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photon. (2)

S. T. Cundiff and A. M. Weiner, Nat. Photon. 4, 760 (2010).
[Crossref]

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

E. I. Ackerman, in 1999 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1999), Vol. 3, pp. 999–1002.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 157–160.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Optical spectrum of output of MZM; (b) electrical spectrum detected by PD.

Fig. 2.
Fig. 2.

Simulation result of the power performance of fundamental (green line) and IMD3 (blue line) as the phase shift of the 2-OSB varies.

Fig. 3.
Fig. 3.

Simulation result of the FIR performance as the amplitude of OCB is attenuated.

Fig. 4.
Fig. 4.

Experimental setup for proposed compensation link.

Fig. 5.
Fig. 5.

Measured electrical spectrum (a) without and (b) with nonlinear compensation.

Fig. 6.
Fig. 6.

Measured SFDR without (dashed line) and with (solid line) nonlinear compensation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Eout(t)=12Einexp(jωct)·[exp(jπ2Vπ(Vb+V1sinΩ1t+V2sinΩ2t))+exp(jπ2Vπ(Vb+V1sinΩ1t+V2sinΩ2t))],
IPDRFI0+I1(sinΩ1t+sinΩ2t)+I3[sin(2Ω1Ω2)t+sin(2Ω2Ω1)t]+,
I1=A+BI3=C+D,
I1=αA+BcosφI3=αC+Dcosφ.

Metrics