Abstract

We demonstrate a cross-phase modulation measurement technique based on the sensitive detection of modulation transfer in a pump-probe setup. By modulating the amplitude of the pump beam and spectrally analyzing the probe beam, we achieve a rapid, background-free measurement of nonlinear phase modulation using power levels acceptable in biological imaging. This measurement technique would allow the extension of widely employed phase microscopy methods to the nonlinear regime, providing intrinsic and universal nonlinear contrast for biological imaging.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef]
  2. P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
    [CrossRef]
  3. M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, Opt. Lett. 30, 1551 (2005).
    [CrossRef]
  4. M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, Opt. Express 16, 4192 (2008).
    [CrossRef]
  5. I. R. Piletic, M. C. Fischer, P. Samineni, G. Yurtsever, and W. S. Warren, Opt. Lett. 33, 1482 (2008).
    [CrossRef]
  6. M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, Opt. Lett. 33, 219 (2008).
    [CrossRef]
  7. P. Samineni, Z. Perret, W. S. Warren, and M. C. Fischer, Opt. Express 18, 12727 (2010).
    [CrossRef]
  8. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
    [CrossRef]
  9. D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
    [CrossRef]
  10. P. S. Spencer, and K. A. Shore, J. Opt. Soc. Am. B 12, 67 (1995).
    [CrossRef]
  11. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, Opt. Lett. 19, 737 (1994).
    [CrossRef]
  12. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71 (2011).

2011 (1)

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71 (2011).

2010 (1)

2008 (4)

2007 (1)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

2005 (1)

1997 (1)

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
[CrossRef]

1995 (1)

1994 (1)

1989 (1)

Chapple, P. B.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
[CrossRef]

Ciocca, M.

Escobedo-Lozoya, Y.

Fischer, M. C.

Fu, D.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

Goswami, D.

Grichnik, J.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

Hermann, J. A.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
[CrossRef]

Hillegas, C. W.

Hong, L.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

Liu, H. C.

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71 (2011).

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

McDuff, R. G.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
[CrossRef]

McKay, T. J.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
[CrossRef]

Miller, A.

Perret, Z.

Piletic, I. R.

Said, A. A.

Samineni, P.

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71 (2011).

Sheik-Bahae, M.

Shore, K. A.

Simon, J. D.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71 (2011).

Spencer, P. S.

Staromlynska, J.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, J. Nonlinear Opt. Phys. 6, 251 (1997).
[CrossRef]

Strickland, D.

Tull, J. X.

Van Stryland, E. W.

Wagner, W.

Warren, W. S.

Yasuda, R.

Ye, T.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, Opt. Lett. 30, 1551 (2005).
[CrossRef]

Yurtsever, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SPM measurements utilizing shaped pulses with a rotating local oscillator (LO). (b) Separation of modulation and detection in the XPM measurements. The pump pulses are amplitude-modulated, and a static phase shift is imposed onto the center of the probe spectrum. Modulation is transferred from pump to probe during nonlinear interaction.

Fig. 2.
Fig. 2.

Experimental setup for SPM/XPM measurements using the spectral reshaping technique: DC, dichroic mirror; F, pump filter; BPF, band-pass filter; PD, photodiode.

Fig. 3.
Fig. 3.

Power scaling of XPM, SPM, and their respective background signals in glass. The power used for SPM measurements is equal to the sum of powers of both the beams used in XPM measurements.

Fig. 4.
Fig. 4.

XPM measurements of Rhodamine 6G solution in a glass cuvette. θ is the static phase shift of the LO. The total input power was about 22 mW.

Fig. 5.
Fig. 5.

Pump-probe delay scans with the spectral reshaping technique in pure methanol and R6G in methanol. The pump and probe wavelengths were 672 nm and 802 nm, respectively, with a total power of about 25 mW.

Fig. 6.
Fig. 6.

(a) Linear transmission and (b) cross-phase modulation images of three fixed breast cancer cells. The pump and probe wavelengths used are 712 nm and 804 nm, respectively, with a total power of about 21 mW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Em(z,τ)z=(iηmα22)(|Em(z,τ)|2+2|En(z,τ)|2)Em(z,τ),
ΔE˜pr2z(iηα22)(|Epu|2Epr˜+|Epr|2Epr˜),
E˜out=E˜LOexp(iθ)+ΔE˜pr.
Slock-in2zE˜LO|Epu|2Epr˜(ηsinθα22cosθ).

Metrics