Abstract

Frequency-shifted feedback (FSF) lasers are potential candidates for long distance telemetry due to the appearance of beatings in the noise spectrum at the output of a homodyne interferometer: the frequencies of these beatings vary linearly with the path delay. In this Letter we demonstrate that these beatings also occur in the heterodyne mixing of two identical, but distinct, FSF lasers. This phenomenon is explained by the passive cavity model and is exploited to characterize the time–spectrum properties of FSF lasers. Consequences on telemetry with FSF lasers are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
    [CrossRef]
  2. K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
    [CrossRef]
  3. K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
    [CrossRef]
  4. H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
    [CrossRef]
  5. K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
    [CrossRef]
  6. K. Nakamura, T. Miyahara, and H. Ito, Appl. Phys. Lett. 72, 2631 (1998).
    [CrossRef]
  7. L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 300 (2009).
    [CrossRef]
  8. H Guillet de Chatellus and J.-P. Pique, Opt. Commun. 283 (2010) 71.
    [CrossRef]
  9. M. Brunel and M. Vallet, Opt. Lett. 33, 2524 (2008).
    [CrossRef]

2011

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

2010

H Guillet de Chatellus and J.-P. Pique, Opt. Commun. 283 (2010) 71.
[CrossRef]

2009

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 300 (2009).
[CrossRef]

2008

2000

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

1998

K. Nakamura, T. Miyahara, and H. Ito, Appl. Phys. Lett. 72, 2631 (1998).
[CrossRef]

1997

K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
[CrossRef]

1995

K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
[CrossRef]

1994

F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
[CrossRef]

Balle, S.

F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
[CrossRef]

Bergmann, K.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 300 (2009).
[CrossRef]

F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
[CrossRef]

Brunel, M.

Glastre, W.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

Guillet de Chatellus, H

H Guillet de Chatellus and J.-P. Pique, Opt. Commun. 283 (2010) 71.
[CrossRef]

Guillet de Chatellus, H.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

Hara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

Hugon, O.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

Ito, H.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

K. Nakamura, T. Miyahara, and H. Ito, Appl. Phys. Lett. 72, 2631 (1998).
[CrossRef]

K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
[CrossRef]

K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
[CrossRef]

Jacquin, O.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

Kasahara, K.

K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
[CrossRef]

K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
[CrossRef]

Kowalski, F. V.

F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
[CrossRef]

Lacot, E.

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

Littler, I. C. M.

F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
[CrossRef]

Miyahara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

K. Nakamura, T. Miyahara, and H. Ito, Appl. Phys. Lett. 72, 2631 (1998).
[CrossRef]

Nakamura, K.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

K. Nakamura, T. Miyahara, and H. Ito, Appl. Phys. Lett. 72, 2631 (1998).
[CrossRef]

K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
[CrossRef]

K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
[CrossRef]

Pique, J.-P.

H Guillet de Chatellus and J.-P. Pique, Opt. Commun. 283 (2010) 71.
[CrossRef]

Sato, M.

K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
[CrossRef]

K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
[CrossRef]

Shore, B. W.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 300 (2009).
[CrossRef]

Vallet, M.

Yatsenko, L. P.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 300 (2009).
[CrossRef]

Yoshida, M.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

Appl. Phys. Lett.

K. Nakamura, T. Miyahara, and H. Ito, Appl. Phys. Lett. 72, 2631 (1998).
[CrossRef]

IEEE J. Quantum Electron.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

Opt. Commun.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, Opt. Commun. 282, 300 (2009).
[CrossRef]

H Guillet de Chatellus and J.-P. Pique, Opt. Commun. 283 (2010) 71.
[CrossRef]

K. Nakamura, K. Kasahara, M. Sato, and H. Ito, Opt. Commun. 121, 137 (1995).
[CrossRef]

H. Guillet de Chatellus, E. Lacot, O. Jacquin, W. Glastre, and O. Hugon, Opt. Commun. 284, 4965 (2011).
[CrossRef]

Opt. Eng.

F. V. Kowalski, S. Balle, I. C. M. Littler, and K. Bergmann, Opt. Eng. 33, 1146 (1994).
[CrossRef]

Opt. Lett.

Opt. Rev.

K. Kasahara, K. Nakamura, M. Sato, and H. Ito, Opt. Rev. 4, 180 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Top: experimental setup showing the three different experiments, (a), (b), and (c), described in text. Bottom: sketch of the GMCs in the (t,ω) representation illustrating the principle of the experiments. The GMC of laser 1 (solid) is used as a reference. At t0, a test parameter is changed here on laser 2: the optical light field, the path delay, and the phase of the AOM driving signal in (a), (b), and (c) respectively. A shift in the (RF) heterodyne beatings before and after the change of the test parameter indicates a shift in the GMC phase of laser 2 (dashed).

Fig. 2.
Fig. 2.

Spectrum of the photodiode signal. (a) The pump beam of laser 2 is chopped at 50 kHz. Spectra are sampled every 10 μs, with a 5 μs measurement time. (b) The EOM switches at 25 kHz. Spectra are sampled every 20 μs, with a 5 μs measurement time. (c) Top: RF spectrum before and after the AOM phase jump (PSK). Bottom: frequency of the beatings after the phase jump with respect to their value before. Blue triangles, red circles, and black squares are experimental data corresponding to phase jumps ϕ of 20, 60, and 100 deg, respectively. Solid lines represent the theoretical predictions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(t)=ξ˜(ω)FR,Δτr(ωτrΔtψ)eiωtdω,
E1(t)E2*(t+τ)=G(Ω)eiΩ(t+τ)ΛR2(Ωτr+Δτ+ψ)dΩ,

Metrics