Abstract

A silicon on insulator (SOI)-based trapezoidal waveguide with a 45° reflector for noncoplanar optical interconnect is demonstrated. The proposed waveguide is fabricated on an orientation-defined (100) SOI substrate by using a single-step anisotropic wet-etching process. The optical performances of proposed waveguides are numerically and experimentally studied. Transmittance of 4.51dB, alignment tolerance of ±20μm, cross talk of 53dB, and propagation loss of 0.404dB/cm are achieved The proposed waveguide would be a basic element and suitable for the future intrachip optical interconnects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
    [CrossRef]
  2. K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, Opt. Express 12, 3072 (2004).
    [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photon. 4, 518 (2010).
    [CrossRef]
  4. J. Liu, J. Yu, S. Chen, and Z. Li, IEEE Photon. Technol. Lett. 17, 1187 (2005).
    [CrossRef]
  5. Y. Qian, S. Kim, J. Song, and G. Nordin, Opt. Express 14, 6020 (2006).
    [CrossRef]
  6. Y. Qian, J. Song, S. Kim, and G. P. Nordin, Opt. Express 15, 16712 (2007).
    [CrossRef]
  7. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, and M. L. Wu, Opt. Express 17, 20938 (2009).
    [CrossRef]
  8. H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, Opt. Express 17, 24250 (2009).
    [CrossRef]
  9. O. Powell, J. Lightwave Technol. 20, 1851 (2002).
    [CrossRef]

2010 (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photon. 4, 518 (2010).
[CrossRef]

2009 (2)

2007 (1)

2006 (1)

2005 (1)

J. Liu, J. Yu, S. Chen, and Z. Li, IEEE Photon. Technol. Lett. 17, 1187 (2005).
[CrossRef]

2004 (1)

2002 (1)

1996 (1)

T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
[CrossRef]

Chan, P. W. L.

T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
[CrossRef]

Chang, C. C.

Chang, S. F.

Chen, S.

J. Liu, J. Yu, S. Chen, and Z. Li, IEEE Photon. Technol. Lett. 17, 1187 (2005).
[CrossRef]

Chen, S. P.

Eng, T. T. H.

T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photon. 4, 518 (2010).
[CrossRef]

Ho, J. Y. L.

T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
[CrossRef]

Hsiao, H. L.

Hsu, C. H.

Imaoka, Y.

Kan, S. C.

T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
[CrossRef]

Kim, S.

Kintaka, K.

Kuo, F. M.

Lan, H. C.

Lee, C. Y.

Li, Z.

J. Liu, J. Yu, S. Chen, and Z. Li, IEEE Photon. Technol. Lett. 17, 1187 (2005).
[CrossRef]

Lin, Y. S.

Liu, J.

J. Liu, J. Yu, S. Chen, and Z. Li, IEEE Photon. Technol. Lett. 17, 1187 (2005).
[CrossRef]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photon. 4, 518 (2010).
[CrossRef]

Nishihara, H.

Nishihara, M.

Nishii, J.

Nordin, G.

Nordin, G. P.

Ohmori, J.

Powell, O.

Qian, Y.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photon. 4, 518 (2010).
[CrossRef]

Satoh, R.

Shi, J. W.

Song, J.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nature Photon. 4, 518 (2010).
[CrossRef]

Ura, S.

Wang, C. M.

Wong, G. K. L.

T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, IEEE Photon. Technol. Lett. 8, 1196 (1996).
[CrossRef]

Wu, M. L.

Yu, J.

J. Liu, J. Yu, S. Chen, and Z. Li, IEEE Photon. Technol. Lett. 17, 1187 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schema of a SOI-based trapezoidal waveguide with a 45° microreflector for noncoplanar light bending.

Fig. 2.
Fig. 2.

Cross-sectional schema of a SOI-based trapezoidal waveguide with 45° sidewalls.

Fig. 3.
Fig. 3.

Simulated light-propagation and its intensity profile evolution in the proposed structure using the ray tracing method. (a) The light propagation along the SOI-based trapezoidal waveguide bend. (b) Intensity profile at the input port. (c) Intensity profile at the center of silicon substrate. (d) Intensity profile at the 45° microreflector facet. (e) Intensity profile in the trapezoidal waveguide.

Fig. 4.
Fig. 4.

SEM photos of fabricated waveguide structures. (a) The end facet and sidewalls of trapezoidal waveguide. (b) The multichannel trapezoidal waveguides with microreflectors.

Fig. 5.
Fig. 5.

The output optical-field distribution of proposed structure, which is observed using an IR camera.

Fig. 6.
Fig. 6.

The alignment tolerances of proposed waveguide include measured results and simulated results at (a) the horizontal (X) direction and (b) the vertical (Y) direction.

Tables (1)

Tables Icon

Table 1. Performances of SOI-Based Trapezoidal Waveguide with a 45° Microreflector

Metrics