Abstract

Low-power-threshold cw laser-induced incandescence (CWLII) has been observed in La2O3:Er3+-Yb3+ phosphor on excitation by a 976 nm IR laser. It is suggested that incandescence originates from the extensive heating induced by the nonradiative processes taking place following the laser excitation. Other mechanisms for similar observations have also been suggested in the literature and have been discussed with the present observations. The estimated temperature for the CWLII approaches around 2650 K, and this seems to provide an effective way to rapidly attain high temperature in nano/microvolumes of phosphor. The phosphor exhibited efficient upconversion, and the ratio of the H211/2I415/2 and S43/2I415/2 band intensities of Er3+ permits measurement of the temperature rise, from a distance.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).
    [CrossRef]
  2. A. Jenkins, Nat. Photon. 2, 258 (2008).
    [CrossRef]
  3. V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, Opt. Express 17, 11794 (2009).
    [CrossRef]
  4. A. Polman, Phys. B 300, 78 (2001).
    [CrossRef]
  5. S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 94, 165 (2009).
    [CrossRef]
  6. S. K. Singh, K. Kumar, and S. B. Rai, J. Appl. Phys. 106, 093520 (2009).
    [CrossRef]
  7. S. K. Singh, K. Kumar, M. Singh, and S. B. Rai, Opt. Lett. 35, 1575 (2010).
    [CrossRef]
  8. A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).
    [CrossRef]
  9. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
    [CrossRef]
  10. V. Beyer and D. A. Greenhalgh, Appl. Phys. B 83, 455(2006).
    [CrossRef]
  11. J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
    [CrossRef]
  12. S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
    [CrossRef]
  13. J. Wang and P. A. Tanner, J. Am. Chem. Soc. 132, 947 (2010).
    [CrossRef]
  14. Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
    [CrossRef]
  15. V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
    [CrossRef]
  16. S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
    [CrossRef]

2010

J. Wang and P. A. Tanner, J. Am. Chem. Soc. 132, 947 (2010).
[CrossRef]

V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
[CrossRef]

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

S. K. Singh, K. Kumar, M. Singh, and S. B. Rai, Opt. Lett. 35, 1575 (2010).
[CrossRef]

2009

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, Opt. Express 17, 11794 (2009).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 94, 165 (2009).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, J. Appl. Phys. 106, 093520 (2009).
[CrossRef]

F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).
[CrossRef]

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

2008

A. Jenkins, Nat. Photon. 2, 258 (2008).
[CrossRef]

2007

A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

2006

V. Beyer and D. A. Greenhalgh, Appl. Phys. B 83, 455(2006).
[CrossRef]

2004

S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
[CrossRef]

2001

A. Polman, Phys. B 300, 78 (2001).
[CrossRef]

Beyer, V.

V. Beyer and D. A. Greenhalgh, Appl. Phys. B 83, 455(2006).
[CrossRef]

Bisson, J. F.

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

Driesen, K.

Fredrich-Thornton, S. T.

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

Gredin, P.

Greenhalgh, D. A.

V. Beyer and D. A. Greenhalgh, Appl. Phys. B 83, 455(2006).
[CrossRef]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

Huber, G.

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Jenkins, A.

A. Jenkins, Nat. Photon. 2, 258 (2008).
[CrossRef]

Kaviany, M.

S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
[CrossRef]

Koopman, B.

V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
[CrossRef]

Kouznetsov, D.

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Krishna, V.

V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
[CrossRef]

Kumar, D.

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

Kumar, K.

S. K. Singh, K. Kumar, M. Singh, and S. B. Rai, Opt. Lett. 35, 1575 (2010).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, J. Appl. Phys. 106, 093520 (2009).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 94, 165 (2009).
[CrossRef]

Lee, A.

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

Lim, K. Y.

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

Lim, Z. H.

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

Liu, X.

F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).
[CrossRef]

Mortier, M.

Moshchalkov, V. V.

Moudgil, B.

V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
[CrossRef]

Petermann, K.

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Polman, A.

A. Polman, Phys. B 300, 78 (2001).
[CrossRef]

Prakash, O.

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

Rai, S. B.

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

S. K. Singh, K. Kumar, M. Singh, and S. B. Rai, Opt. Lett. 35, 1575 (2010).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, J. Appl. Phys. 106, 093520 (2009).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 94, 165 (2009).
[CrossRef]

Rand, S. C.

S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
[CrossRef]

Redmond, S.

S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
[CrossRef]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

Rodriguez, V. D.

Ruan, X. L.

S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
[CrossRef]

Singh, A. K.

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

Singh, M.

Singh, S. K.

S. K. Singh, K. Kumar, M. Singh, and S. B. Rai, Opt. Lett. 35, 1575 (2010).
[CrossRef]

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 94, 165 (2009).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, J. Appl. Phys. 106, 093520 (2009).
[CrossRef]

Sow, C. H.

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

Stevens, N.

V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
[CrossRef]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

Tanner, P. A.

J. Wang and P. A. Tanner, J. Am. Chem. Soc. 132, 947 (2010).
[CrossRef]

Tikhomirov, V. K.

Ueda, K. I.

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Wang, F.

F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).
[CrossRef]

Wang, J.

J. Wang and P. A. Tanner, J. Am. Chem. Soc. 132, 947 (2010).
[CrossRef]

Zhu, Y.

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

Appl. Phys. B

V. Beyer and D. A. Greenhalgh, Appl. Phys. B 83, 455(2006).
[CrossRef]

S. K. Singh, A. K. Singh, D. Kumar, O. Prakash, and S. B. Rai, Appl. Phys. B 98, 173 (2010).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 94, 165 (2009).
[CrossRef]

Appl. Phys. Lett.

Z. H. Lim, A. Lee, Y. Zhu, K. Y. Lim, and C. H. Sow, Appl. Phys. Lett. 94, 073106 (2009).
[CrossRef]

J. F. Bisson, D. Kouznetsov, K. I. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. Lett. 90, 201901 (2007).
[CrossRef]

Chem. Soc. Rev.

F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).
[CrossRef]

J. Am. Chem. Soc.

J. Wang and P. A. Tanner, J. Am. Chem. Soc. 132, 947 (2010).
[CrossRef]

J. Appl. Phys.

S. K. Singh, K. Kumar, and S. B. Rai, J. Appl. Phys. 106, 093520 (2009).
[CrossRef]

S. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).
[CrossRef]

Nano Lett.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett. 9, 1139(2009).
[CrossRef]

Nano Today

A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

Nat. Nanotechnol.

V. Krishna, N. Stevens, B. Koopman, and B. Moudgil, Nat. Nanotechnol. 5, 330 (2010).
[CrossRef]

Nat. Photon.

A. Jenkins, Nat. Photon. 2, 258 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. B

A. Polman, Phys. B 300, 78 (2001).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (544 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Scheme of experiment setup to achieve CWLII (C, chopper; M, mirror; L, lens; S, sample), (b) emission patterns taken at different time periods, (c) raw intensity profiles of CWLII and standard source (the decreased intensity counts toward higher wavelength side are due to use of a filter), (d) snapshots of the UC emission and CWLII as seen through the camera device (enhanced online, Media 1).

Fig. 2.
Fig. 2.

(a) Plot of FIR with temperature as obtained by heating the sample in oven under low power density and (b) plot of FIR with time under focused condition (high power density).

Fig. 3.
Fig. 3.

(a) Calibrated intensity profiles of standard bulb and CWLII with blackbody fitting (line), (b) time evolution of CWLII emission, and (c) schematic representation of the proposed mechanism for the incandescent emission.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(λ,T)=C2πhc2λ5(ehcλkT1),
T=hckλ11λ21ln(λ25I2)ln(λ15I1)K.
La2O3long_heatingLa2O3+VO+O2.
Wn(T)=Wn(0)(1ehν/kT)n,

Metrics