Abstract

We report the formation of an ultrabroad supercontinuum down to 280 nm in the deep UV by pumping sharply tapered (5–30 mm taper lengths) solid-core photonic crystal fibers with 130 fs, 2 nJ pulses at 800 nm. The taper moves the point of soliton fission to a position where the core is narrower, a process that requires normal dispersion at the input face of the fiber. We find that the generation of deep-UV radiation is limited by strong two-photon absorption in the silica.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  2. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
    [CrossRef]
  3. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  5. J. C. Travers, J. Opt. 12, 113001 (2010).
    [CrossRef]
  6. J. M. Stone and J. C. Knight, Opt. Express 16, 2670 (2008).
    [CrossRef]
  7. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5715 (2006).
    [CrossRef]
  8. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, Opt. Lett. 18, 476 (1993).
    [CrossRef]
  9. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, Opt. Express 18, 27445 (2010).
    [CrossRef]
  10. S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett. 106, 083903 (2011).
    [CrossRef]
  11. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, Opt. Express 15, 5382 (2007).
    [CrossRef]
  12. L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 32, 391 (2007).
    [CrossRef]
  13. S. A. Slattery and D. N. Nikogosyan, Opt. Commun. 228, 127 (2003).
    [CrossRef]
  14. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
    [CrossRef]
  15. A. J. Taylor, R. B. Gibson, and J. P. Roberts, Opt. Lett. 13, 814 (1988).
    [CrossRef]
  16. O. Kittelmann and J. Ringling, Opt. Lett. 19, 2053 (1994).
    [CrossRef]
  17. A. Dragonmir, J. G. McInerney, and D. N. Nikogosyan, Appl. Opt. 41, 4365 (2002).
    [CrossRef]
  18. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, J. Appl. Phys. 66, 4035 (1989).
    [CrossRef]
  19. D. Milam, Appl. Opt. 37, 546 (1998).
    [CrossRef]
  20. J. H. Schulman, Color Centers in Solids (Pergamon, 1963).

2011 (1)

S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett. 106, 083903 (2011).
[CrossRef]

2010 (2)

2009 (1)

F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

2003 (1)

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. 228, 127 (2003).
[CrossRef]

2002 (1)

2000 (1)

1998 (1)

1996 (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

1994 (1)

1993 (1)

1989 (1)

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, J. Appl. Phys. 66, 4035 (1989).
[CrossRef]

1988 (1)

Agrawal, G. P.

Barviau, B.

Brimacombe, R. K.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, J. Appl. Phys. 66, 4035 (1989).
[CrossRef]

Chernikov, S. V.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Dianov, E. M.

Dragonmir, A.

Dudley, J. M.

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, Opt. Express 15, 5382 (2007).
[CrossRef]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Genty, G.

George, A. K.

Gibson, R. B.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Héliot, L.

Ivanov, M.

F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[CrossRef]

Kibler, B.

Kinsler, P.

Kittelmann, O.

Knight, J. C.

Krausz, F.

F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[CrossRef]

Kudlinski, A.

Leopold, K. E.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, J. Appl. Phys. 66, 4035 (1989).
[CrossRef]

Leray, A.

Lin, Q.

McInerney, J. G.

Milam, D.

Mussot, A.

Nikogosyan, D. N.

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. 228, 127 (2003).
[CrossRef]

A. Dragonmir, J. G. McInerney, and D. N. Nikogosyan, Appl. Opt. 41, 4365 (2002).
[CrossRef]

Payne, D. N.

Podlipensky, A.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett. 106, 083903 (2011).
[CrossRef]

Popov, S. V.

Ranka, J. K.

Richardson, D. J.

Ringling, J.

Roberts, J. P.

Rulkov, A. B.

Russell, P. St. J.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett. 106, 083903 (2011).
[CrossRef]

P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Schulman, J. H.

J. H. Schulman, Color Centers in Solids (Pergamon, 1963).

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Slattery, S. A.

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. 228, 127 (2003).
[CrossRef]

Spriet, C.

Stark, S. P.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett. 106, 083903 (2011).
[CrossRef]

Stentz, A. J.

Stone, J. M.

Taylor, A. J.

Taylor, J. R.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5715 (2006).
[CrossRef]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Taylor, R. S.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, J. Appl. Phys. 66, 4035 (1989).
[CrossRef]

Travers, J. C.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Windeler, R. S.

Yin, L.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

J. Appl. Phys. (1)

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, J. Appl. Phys. 66, 4035 (1989).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

J. C. Travers, J. Opt. 12, 113001 (2010).
[CrossRef]

Opt. Commun. (1)

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. 228, 127 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. P. Stark, A. Podlipensky, and P. St. J. Russell, Phys. Rev. Lett. 106, 083903 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[CrossRef]

Other (2)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

J. H. Schulman, Color Centers in Solids (Pergamon, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Outer-diameter variation of several taper transitions, with lengths 5 mm (A), 12 mm (B), 17 mm (C), and 24 mm (D). The inset shows SEM images (on the same scale) of the original and a tapered PCF. (b) Calculated GVD characteristics as the core radius tapers from 2.7 µm to 312 nm in the PCF. At the minimum core diameter, the dispersion is anomalous and very small. The dotted lines show an experimental measurement of the original fiber (OF) and a uniformly tapered fiber (TF) with core diameter 900nm.

Fig. 2.
Fig. 2.

Experimental (a) and simulated (b) energy dependence of a 110 fs, 800 nm pulse launched into the tapered device C. (c) Experimental and numerical spectra for 2 nJ (lower curve) and 5 nJ pulse energy.

Fig. 3.
Fig. 3.

(a) Simulated length dependence of a 110 fs pulse at 800 nm in a 24 mm long taper. The black lines trace the ZDWs. (b) Short-wavelength edge of the SC generated experimentally in devices B, C, and D. The 17 mm transition sets the lower spectral boundary at 280nm.

Fig. 4.
Fig. 4.

(a) Comparison of the two-parabolic-band model (Eq. 1) and the measured values for the frequency dependence of the TPA coefficient of fused silica (taken from [1318]). (b) Simulated short-wavelength SC edge (20 dB level) plotted against taper length both with (upper red curve) and without (lower curve) TPA.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ(ω)=n2ωcAeff(ω)+iβTPA(ω)2Aeff(ω).
βTPA(ω)=KEpn02Eg3(2ω/Eg1)3/2(2ω/Eg)5,

Metrics