Abstract

We propose and experimentally demonstrate a photonic approach to the measurement of the time-difference-of-arrival (TDOA) and the angle-of-arrival (AOA) of a microwave signal. In the proposed system, the TDOA and the AOA are equivalently converted into a phase shift between two replicas of a microwave signal received at two cascaded modulators. The light wave from a CW laser is externally modulated by the microwave signal at the first modulator, which is biased to suppress the optical carrier, leading to the generation of two first-order sidebands, which are further modulated by the phase-delayed microwave signal at the second modulator. Two optical components at the carrier wavelength are generated. The total power at the carrier wavelength is a function of the phase shift due to the coherent interference between the two components. Thus, by measuring the optical power, the phase shift is estimated. The AOA is calculated from the measured phase shifts. In our experiment, the phase shift of a microwave signal at 18 GHz from 160° to 40° is measured with measurement errors of less than ±2.5°.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Y. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. (SciTech, 2004).
  2. A. J. Seeds, IEEE Trans. Microwave Theory Technol. 50, 877 (2002).
    [CrossRef]
  3. T. Nagatsuma, Meas. Sci. Technol. 13, 1655 (2002).
    [CrossRef]
  4. R. A. Minasian, IEEE Trans. Microwave Theory Technol. 54, 832 (2006).
    [CrossRef]
  5. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
    [CrossRef]
  6. C. Wang and J. Yao, J. Lightwave Technol. 28, 1652 (2010).
    [CrossRef]
  7. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
    [CrossRef]
  8. S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
    [CrossRef]
  9. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
    [CrossRef]
  10. S. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
    [CrossRef]
  11. S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
    [CrossRef]
  12. M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
    [CrossRef]
  13. X. Zou, W. Pan, B. Luo, and L. Yan, Opt. Lett. 35, 2747 (2010).
    [CrossRef]
  14. K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
    [CrossRef]
  15. X. Zou, W. Pan, B. Luo, L. Yan, and Y. Jiang, Opt. Express 19, 20580 (2011).
    [CrossRef]
  16. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
    [CrossRef]
  17. B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theory Technol. 58, 3103 (2010).
    [CrossRef]
  18. Y. Wang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Lett. 36, 3897 (2011).
    [CrossRef]
  19. B. Vidal, M. A. Piqueras, and J. Marti, J. Lightwave Technol. 24, 2741 (2006).
    [CrossRef]
  20. Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
    [CrossRef]
  21. X. Zou and J. P. Yao, Opt. Lett. 34, 313 (2009).
    [CrossRef]

2011 (3)

2010 (7)

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theory Technol. 58, 3103 (2010).
[CrossRef]

C. Wang and J. Yao, J. Lightwave Technol. 28, 1652 (2010).
[CrossRef]

S. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
[CrossRef]

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, Opt. Lett. 35, 2747 (2010).
[CrossRef]

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

2009 (3)

X. Zou and J. P. Yao, Opt. Lett. 34, 313 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
[CrossRef]

2007 (1)

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

2006 (4)

R. A. Minasian, IEEE Trans. Microwave Theory Technol. 54, 832 (2006).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, J. Lightwave Technol. 24, 2741 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

2002 (2)

A. J. Seeds, IEEE Trans. Microwave Theory Technol. 50, 877 (2002).
[CrossRef]

T. Nagatsuma, Meas. Sci. Technol. 13, 1655 (2002).
[CrossRef]

Austin, M. W.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

Babbitt, W. R.

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

Barber, Z. W.

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

Bui, L. A.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Canning, J.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Chi, H.

Choi, D. Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Dai, J.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Dai, Y.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Drummond, M. V.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
[CrossRef]

Duan, R.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Eggleton, B. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
[CrossRef]

Emami, H.

Fu, S.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
[CrossRef]

Harrington, C.

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Jiang, Y.

Jin, X.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Lee, K.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
[CrossRef]

Li, Y.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Lin, J.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Luo, B.

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Marques, C. A. F.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
[CrossRef]

Marti, J.

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theory Technol. 58, 3103 (2010).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, J. Lightwave Technol. 24, 2741 (2006).
[CrossRef]

Mengual, T.

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theory Technol. 58, 3103 (2010).
[CrossRef]

Minasian, R. A.

R. A. Minasian, IEEE Trans. Microwave Theory Technol. 54, 832 (2006).
[CrossRef]

Mitchell, A.

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

Mohan, R. K.

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

Monteiro, P. P.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
[CrossRef]

Nagatsuma, T.

T. Nagatsuma, Meas. Sci. Technol. 13, 1655 (2002).
[CrossRef]

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Nogueira, R. N.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Pan, S.

S. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

Pan, W.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Pelusi, M. D.

Piqueras, M. A.

Sarkhosh, N.

Seeds, A. J.

A. J. Seeds, IEEE Trans. Microwave Theory Technol. 50, 877 (2002).
[CrossRef]

Shum, P. P.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
[CrossRef]

Thiel, C. W.

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

Tsui, J. B. Y.

J. B. Y. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. (SciTech, 2004).

Vidal, B.

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theory Technol. 58, 3103 (2010).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, J. Lightwave Technol. 24, 2741 (2006).
[CrossRef]

Vo, T. D.

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Wang, C.

Wang, Y.

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

Wu, J.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Xu, K.

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

Yan, L.

Yao, J.

Yao, J. P.

S. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

X. Zou and J. P. Yao, Opt. Lett. 34, 313 (2009).
[CrossRef]

Zhang, X.

Zheng, S.

Zhou, J.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
[CrossRef]

Zou, X.

IEEE Photon. J. (1)

S. Fu, J. Zhou, P. P. Shum, and K. Lee, IEEE Photon. J. 2, 967 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, IEEE Photon. Technol. Lett. 22, 1226 (2010).
[CrossRef]

K. Xu, J. Dai, R. Duan, Y. Dai, Y. Li, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 23, 1328 (2011).
[CrossRef]

S. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (4)

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Technol. 54, 868 (2006).
[CrossRef]

A. J. Seeds, IEEE Trans. Microwave Theory Technol. 50, 877 (2002).
[CrossRef]

R. A. Minasian, IEEE Trans. Microwave Theory Technol. 54, 832 (2006).
[CrossRef]

B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theory Technol. 58, 3103 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Lumin. (1)

Z. W. Barber, C. Harrington, C. W. Thiel, W. R. Babbitt, and R. K. Mohan, J. Lumin. 130, 1614 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

T. Nagatsuma, Meas. Sci. Technol. 13, 1655 (2002).
[CrossRef]

Nat. Photon. (2)

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, Nat. Photon. 3, 139 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

J. B. Y. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. (SciTech, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed approach. Inset, illustration of the TDOA and AOA.

Fig. 2.
Fig. 2.

Experimental setup: MZM, Mach–Zehnder modulator; FBG, fiber Bragg grating; VODL, variable optical delay line; PC, polarization controller; PolM, polarization modulator; PBS, polarization beam splitter; OSA, optical spectrum analyzer.

Fig. 3.
Fig. 3.

(a) Transmission spectrum of the FBG and (b) the spectrum detected at the output of the FBG.

Fig. 4.
Fig. 4.

Experimental results (circles) and theoretical trend (dotted curve) for the total optical power.

Fig. 5.
Fig. 5.

Measured phase shifts (circle dots) and the corresponding measurement errors (vertical bars).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ωτ+ΩL/c=ϕ+2kπ,θ=cos1(τc/d),
E1(t)jJ1(β1)[expj(ωΩ)t+expj(ω+Ω)t)],
E2(t)j2J1(β1)×{expj[(ωΩ)t+β2cos(Ωt+ϕ)]+expj[(ωΩ)tβ2cos(Ωt+ϕ)]+expj[(ω+Ω)t+β2cos(Ωt+ϕ)]+expj[(ω+Ω)tβ2cos(Ωt+ϕ)]}=J1(β1)J1(β2){expj[(ω2Ω)tϕ)]+expj[(ω+2Ω)t+ϕ)]+expj(ωtϕ)+expj(ωt+ϕ)},
P32[J1(β1)J1(β2)]2×[1+cos(2ϕ)].

Metrics