Abstract

We propose and experimentally demonstrate a photonic approach to the measurement of the time-difference-of-arrival (TDOA) and the angle-of-arrival (AOA) of a microwave signal. In the proposed system, the TDOA and the AOA are equivalently converted into a phase shift between two replicas of a microwave signal received at two cascaded modulators. The light wave from a CW laser is externally modulated by the microwave signal at the first modulator, which is biased to suppress the optical carrier, leading to the generation of two first-order sidebands, which are further modulated by the phase-delayed microwave signal at the second modulator. Two optical components at the carrier wavelength are generated. The total power at the carrier wavelength is a function of the phase shift due to the coherent interference between the two components. Thus, by measuring the optical power, the phase shift is estimated. The AOA is calculated from the measured phase shifts. In our experiment, the phase shift of a microwave signal at 18 GHz from 160° to 40° is measured with measurement errors of less than ±2.5°.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

Z. Cao, Q. Wang, R. Lu, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen
Opt. Lett. 39(6) 1497-1500 (2014)

Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio

Wen Ting Wang, Jian Guo Liu, Hai Kuo Mei, and Ning Hua Zhu
Opt. Express 24(1) 388-399 (2016)

Photonic generation of phase-coded microwave signals with tunable carrier frequency

H.-Y. Jiang, L.-S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou
Opt. Lett. 38(8) 1361-1363 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription