Abstract

We present an automatic procedure for 3D tracking of micrometer-sized particles with high-NA digital lensless holographic microscopy. The method uses a two-feature approach to search for the best focal planes and to distinguish particles from artifacts or other elements on the reconstructed stream of the holograms. A set of reconstructed images is axially projected onto a single image. From the projected image, the centers of mass of all the reconstructed elements are identified. Starting from the centers of mass, the morphology of the profile of the maximum intensity along the reconstruction direction allows for the distinguishing of particles from others elements. The method is tested with modeled holograms and applied to automatically track micrometer-sized bubbles in a sample of 4mm3 of soda.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
    [CrossRef]
  2. P. Tabeling, Introduction to Microfluidics (Oxford University, 2005).
  3. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, Appl. Opt. 49, 1549 (2010).
    [CrossRef]
  4. P. Langehanenberg, G. von Bally, and B. Kemper, 3D Res. 2, 1 (2011).
    [CrossRef]
  5. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, Opt. Lett. 28, 164 (2003).
    [CrossRef]
  6. J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
    [CrossRef]
  7. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
    [CrossRef]
  8. J. Garcia-Sucerquia, W. Xu, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Optik 119, 419 (2008).
    [CrossRef]
  9. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
    [CrossRef]
  10. N. Otsu, IEEE Trans. Syst. Man Cybern. 9, 62 (1979).
    [CrossRef]
  11. F. C. Cheong, B. Krishnatreya, and D. G. Grier, Opt. Express 18, 13563 (2010).
    [CrossRef]
  12. Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, Opt. Eng. 45, 075801 (2006).
    [CrossRef]
  13. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Appl. Opt. 41, 5367 (2002).
    [CrossRef]

2011

P. Langehanenberg, G. von Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

2010

2008

J. Garcia-Sucerquia, W. Xu, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Optik 119, 419 (2008).
[CrossRef]

2007

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

2006

2003

2002

1995

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
[CrossRef]

1992

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
[CrossRef]

1979

N. Otsu, IEEE Trans. Syst. Man Cybern. 9, 62 (1979).
[CrossRef]

Barbastathis, G.

Callow, J. A.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Callow, M. E.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Cheong, F. C.

Domínguez-Caballero, J. A.

Fink, H.-W.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
[CrossRef]

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. Xu, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Optik 119, 419 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
[CrossRef]

Grier, D. G.

Grunze, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Heydt, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Jericho, M. H.

Jericho, S. M.

J. Garcia-Sucerquia, W. Xu, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Optik 119, 419 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
[CrossRef]

Kemper, B.

P. Langehanenberg, G. von Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

Klages, P.

Kompenhans, J.

Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, Opt. Eng. 45, 075801 (2006).
[CrossRef]

Kreuzer, H. J.

Krishnatreya, B.

Langehanenberg, P.

P. Langehanenberg, G. von Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

Loomis, N.

Mason, T. G.

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
[CrossRef]

Meinertzhagen, I. A.

Nakamura, K.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
[CrossRef]

Otsu, N.

N. Otsu, IEEE Trans. Syst. Man Cybern. 9, 62 (1979).
[CrossRef]

Pettitt, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Rosenhahn, A.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Schmid, H.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
[CrossRef]

Schroder, A.

Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, Opt. Eng. 45, 075801 (2006).
[CrossRef]

Shen, G.

Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, Opt. Eng. 45, 075801 (2006).
[CrossRef]

Tabeling, P.

P. Tabeling, Introduction to Microfluidics (Oxford University, 2005).

Tian, L.

von Bally, G.

P. Langehanenberg, G. von Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

Weitz, D. A.

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
[CrossRef]

Wierzbicki, A.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
[CrossRef]

Xu, W.

Zhang, Y.

Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, Opt. Eng. 45, 075801 (2006).
[CrossRef]

3D Res.

P. Langehanenberg, G. von Bally, and B. Kemper, 3D Res. 2, 1 (2011).
[CrossRef]

Appl. Opt.

IEEE Trans. Syst. Man Cybern.

N. Otsu, IEEE Trans. Syst. Man Cybern. 9, 62 (1979).
[CrossRef]

J. Adhes.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, J. Adhes. 83, 417 (2007).
[CrossRef]

Opt. Eng.

Y. Zhang, G. Shen, A. Schroder, and J. Kompenhans, Opt. Eng. 45, 075801 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

J. Garcia-Sucerquia, W. Xu, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, Optik 119, 419 (2008).
[CrossRef]

Phys. Rev. Lett.

T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
[CrossRef]

Ultramicroscopy

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
[CrossRef]

Other

P. Tabeling, Introduction to Microfluidics (Oxford University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Illustration of the process for automatic 3D tracking of micrometer-sized particles. (a) Modeled contrast hologram with three particles. Plane XY of (b) is the projected image according to Eq. (2). (c) VOIs. (d) Intensity plots along each VOI with the SSE value.

Fig. 2.
Fig. 2.

3D tracking of a point particle moving along a spiral-like trajectory (model). (a) Composed modeled hologram. (b) Axial projection of the reconstructed images. (c), (d) Retrieved positions for two different views. Modeled (♦) and recovered (•) positions. Color scale bars from blue=100μm to red=200μm.

Fig. 3.
Fig. 3.

3D tracking of micrometer-sized bubbles in 4mm3 of soda (experiment). (a) Experimental composed hologram of 200 in-line holograms. (b) Axially projected image of the reconstructed images. (c), (d) Two views of the reconstructed volume sample. Color scale bars from blue=5000μm to red=6000μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U(rn)=ScreenI˜(r)exp[ik(rnr|r|)]dr.
Im,n=r=1P(Im,nr/k=1Ml=1NIk,lr)

Metrics