Abstract

In this Letter, we report a significant step forward in the design of single-optical-element optics for two-dimensional (2D) hard X-ray differential-interference-contrast (DIC) imaging based on modified photon sieves (MPSs). MPSs were obtained by a modified optic, i.e., combining two overlaid binary gratings and a photon sieve through two logical XOR operations. The superior performance of MPSs was demonstrated. Compared to Fresnel zone plates-based DIC diffractive optical elements (DOEs), which help to improve contrast only in one direction, MPSs can provide better resolution and 2D DIC imaging. Compared to normal photon sieves, MPSs are capable of imaging at a significantly higher image contrast. We anticipate that MPSs can provide a complementary and versatile high-resolution nondestructive imaging tool for ultra-large-scale integrated circuits at 45 nm node and below.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilhein, B. Kaulich, and J. Susini, Opt. Commun. 193, 19 (2001).
    [CrossRef]
  2. C. Chang, P. Naulleau, E. Anderson, K. Rosfjord, and D. Attwood, Appl. Opt. 41, 7384 (2002).
    [CrossRef]
  3. B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B. Fayard, and J. Susini, J. Opt. Soc. Am. A 19, 797 (2002).
    [CrossRef]
  4. M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
    [CrossRef]
  5. A. Sakdinawat and Y. Liu, Opt. Express 16, 1559 (2008).
    [CrossRef]
  6. O. von Hofsten, M. Bertilson, M. Lindblom, A. Holmberg, and U. Vogt, Opt. Lett. 33, 932 (2008).
    [CrossRef]
  7. E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein, Opt. Express 11, 2278 (2003).
    [CrossRef]
  8. U. Vogt, M. Lindblom, P. A. C. Jansson, T. T. Tuohimaa, A. Holmberg, H. M. Hertz, M. Wieland, and T. Wilhein, Opt. Lett. 30, 2167 (2005).
    [CrossRef]
  9. C. Chang, A. Sakdinawat, P. Fischer, E. Anderson, and D. Attwood, Opt. Lett. 31, 1564 (2006).
    [CrossRef]
  10. O. von Hofsten, M. Bertilson, and U. Vogt, Opt. Express 16, 1132 (2008).
    [CrossRef]
  11. M. Bertilson, O. von Hofsten, M. Lindblom, T. Wilhein, H. M. Hertz, and U. Vogt, Appl. Phys. Lett. 92, 064104 (2008).
    [CrossRef]
  12. T. Nakamura and C. Chang, Opt. Express 19, 15304 (2011).
    [CrossRef]
  13. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
    [CrossRef]
  14. Q. Cao and J. Jahns, J. Opt. Soc. Am. A 20, 1005 (2003).
    [CrossRef]
  15. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, J. Opt. Soc. Am. A 22, 342 (2005).
    [CrossRef]
  16. G. Andersen, Opt. Lett. 30, 2976 (2005).
    [CrossRef]
  17. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, Opt. Express 14, 11958 (2006).
    [CrossRef]
  18. G. Andersen and D. Tullson, Appl. Opt. 46, 3706 (2007).
    [CrossRef]
  19. F. Giménez, W. D. Furlan, and J. A. Monsoriu, Opt. Commun. 277, 1 (2007).
    [CrossRef]
  20. G. Andersen, Appl. Opt. 49, 6391 (2010).
    [CrossRef]
  21. C. Xie, X. Zhu, H. Li, L. Shi, and Y. Wang, Opt. Lett. 35, 4048 (2010).
    [CrossRef]
  22. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, Opt. Express 14, 11958 (2006).
    [CrossRef]
  23. D. M. Gruenbacher and D. R. Hummels, IEEE Trans. Signal Process. 42, 3276 (1994).
    [CrossRef]
  24. H. Yan and H. Yan, Phys. Rev. B 81, 075402 (2010).
    [CrossRef]

2011

2010

2008

2007

G. Andersen and D. Tullson, Appl. Opt. 46, 3706 (2007).
[CrossRef]

F. Giménez, W. D. Furlan, and J. A. Monsoriu, Opt. Commun. 277, 1 (2007).
[CrossRef]

2006

2005

2003

2002

2001

T. Wilhein, B. Kaulich, and J. Susini, Opt. Commun. 193, 19 (2001).
[CrossRef]

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

1994

D. M. Gruenbacher and D. R. Hummels, IEEE Trans. Signal Process. 42, 3276 (1994).
[CrossRef]

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Altissimo, M.

Andersen, G.

Anderson, E.

Attwood, D.

Awaji, M.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Barbastathis, G.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Bertilson, M.

Cabrini, S.

Cao, Q.

Chang, C.

Cojoc, D.

Di Fabrizio, E.

Facci, P.

Fayard, B.

Fischer, P.

Furlan, W. D.

Gil, D.

Giménez, F.

Gruenbacher, D. M.

D. M. Gruenbacher and D. R. Hummels, IEEE Trans. Signal Process. 42, 3276 (1994).
[CrossRef]

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Hertz, H. M.

M. Bertilson, O. von Hofsten, M. Lindblom, T. Wilhein, H. M. Hertz, and U. Vogt, Appl. Phys. Lett. 92, 064104 (2008).
[CrossRef]

U. Vogt, M. Lindblom, P. A. C. Jansson, T. T. Tuohimaa, A. Holmberg, H. M. Hertz, M. Wieland, and T. Wilhein, Opt. Lett. 30, 2167 (2005).
[CrossRef]

Holmberg, A.

Hummels, D. R.

D. M. Gruenbacher and D. R. Hummels, IEEE Trans. Signal Process. 42, 3276 (1994).
[CrossRef]

Jahns, J.

Jansson, P. A. C.

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Kamijo, N.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Kaulich, B.

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Li, H.

Lindblom, M.

Liu, Y.

Menon, R.

Monsoriu, J. A.

Nakamura, T.

Naulleau, P.

Pons, A.

Romanato, F.

Rosfjord, K.

Sakdinawat, A.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Shi, L.

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Smith, H. I.

Susini, J.

Suzuki, Y.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Takano, H.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Takeuchi, A.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Tamura, S.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Tullson, D.

Tuohimaa, T. T.

Vogt, U.

von Hofsten, O.

Wang, Y.

Wieland, M.

Wilhein, T.

Xie, C.

Yan, H.

H. Yan and H. Yan, Phys. Rev. B 81, 075402 (2010).
[CrossRef]

H. Yan and H. Yan, Phys. Rev. B 81, 075402 (2010).
[CrossRef]

Yasumoto, M.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Zhu, X.

Appl. Opt.

Appl. Phys. Lett.

M. Bertilson, O. von Hofsten, M. Lindblom, T. Wilhein, H. M. Hertz, and U. Vogt, Appl. Phys. Lett. 92, 064104 (2008).
[CrossRef]

IEEE Trans. Signal Process.

D. M. Gruenbacher and D. R. Hummels, IEEE Trans. Signal Process. 42, 3276 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Synchrotron Radiat.

M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, J. Synchrotron Radiat. 9, 125 (2002).
[CrossRef]

Nature

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, Nature 414, 184 (2001).
[CrossRef]

Opt. Commun.

F. Giménez, W. D. Furlan, and J. A. Monsoriu, Opt. Commun. 277, 1 (2007).
[CrossRef]

T. Wilhein, B. Kaulich, and J. Susini, Opt. Commun. 193, 19 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

H. Yan and H. Yan, Phys. Rev. B 81, 075402 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustration showing the basic patterns of (a) PSs and (b) MPSs.

Fig. 2.
Fig. 2.

(a) Diffraction pattern at the focal plane that generate four sharp spots. (b), (c) Cross sections of (a) along dashed lines X and Y, respectively.

Fig. 3.
Fig. 3.

Comparison of (a) PS and (b) MPS images of 45 nm half-pitch nested-L test structures. Dense line image profiles at the position indicated by the solid line and isolated line image profiles at the position indicated by the dashed line are compared in (c) and (d), respectively.

Fig. 4.
Fig. 4.

Comparison of PSs and MPSs in terms of image contrast versus technology node for dense lines and isolated line.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Nbr,tl(n)=0.5πatan(d(2nλf+n2λ2(2n1)λf+(2n1)2λ2/4)w(2nλf+n2λ2+(2n1)λf+(2n1)2λ2/4))υn0(N,Wbr,tl),Nbl,tr(n)=0.5πatan(d((2n1)λf+(2n1)2λ2/42(n1)λf+(n1)2λ2)w((2n1)λf+(2n1)2λ2/4+2(n1)λf+(n1)2λ2))υn0(N,Wbl,tr),N=(dw)2λf4δ2andn=1,2,,N,

Metrics