Abstract

By introducing an intracavity Doppler shift in a resonator with a highly dispersive nonlinear medium, a train of optical pulses is generated whose features are related to the slow/fast-light response of the medium. The cavity transmission is asymmetric and the pulse shape is modified differently depending on the direction of the Doppler shift, hence, on the sign of the group delay provided by the dispersive process.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Brandl and O. D. Mücke, Opt. Lett. 35, 4223 (2010).
    [CrossRef]
  2. P. Zalicki and R. Zare, J. Chem. Phys. 102, 2708 (1995).
    [CrossRef]
  3. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
    [CrossRef]
  4. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, Opt. Express 18, 17658 (2010).
    [CrossRef]
  5. F. V. Kowalsky, J. A. Squier, and J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
    [CrossRef]
  6. S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
    [CrossRef]
  7. R. Rebhi, P. Mathey, H. Rudolf Jauslin, S. Odoulov, G. Cook, and D. R. Evans, Opt. Lett. 34, 377 (2009).
    [CrossRef]
  8. T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, Opt. Lett. 36, 1551 (2011).
    [CrossRef]
  9. U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
    [CrossRef]
  10. A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
    [CrossRef]
  11. S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008).
    [CrossRef]

2011 (1)

2010 (2)

2009 (1)

2008 (1)

S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008).
[CrossRef]

2007 (3)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

1995 (1)

P. Zalicki and R. Zare, J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

1987 (1)

F. V. Kowalsky, J. A. Squier, and J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

1985 (1)

S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
[CrossRef]

Arecchi, F. T.

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

Bortolozzo, U.

S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

Brandl, M. F.

Bretenaker, F.

Cook, G.

Cronin-Golomb, M.

S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
[CrossRef]

Evans, D. R.

Ghosh, R.

Goldfarb, F.

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Huignard, J. P.

S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

Jauslin, H. Rudolf

Kowalsky, F. V.

F. V. Kowalsky, J. A. Squier, and J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Kwong, S.-K.

S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
[CrossRef]

Lauprêtre, T.

Mathey, P.

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Montina, A.

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

Mücke, O. D.

Odoulov, S.

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Pinckney, J. T.

F. V. Kowalsky, J. A. Squier, and J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Proux, C.

Rebhi, R.

Residori, S.

S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, Opt. Express 18, 17658 (2010).
[CrossRef]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Salit, M.

Schwartz, S.

Shahriar, M. S.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, Opt. Express 18, 17658 (2010).
[CrossRef]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Squier, J. A.

F. V. Kowalsky, J. A. Squier, and J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Ury, I.

S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
[CrossRef]

Wang, Y.

Yablon, J.

Yariv, A.

S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
[CrossRef]

Yum, H. N.

Zalicki, P.

P. Zalicki and R. Zare, J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

Zare, R.

P. Zalicki and R. Zare, J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

F. V. Kowalsky, J. A. Squier, and J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

S.-K. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, Appl. Phys. Lett. 47, 460 (1985).
[CrossRef]

J. Chem. Phys. (1)

P. Zalicki and R. Zare, J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, Phys. Rev. A 75, 053807 (2007).
[CrossRef]

A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, and F. T. Arecchi, Phys. Rev. A 76, 033826 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

S. Residori, U. Bortolozzo, and J. P. Huignard, Phys. Rev. Lett. 100, 203603 (2008).
[CrossRef]

U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, and S. Residori, Phys. Rev. Lett. 99, 023901 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup: M, mirror; MPZ, piezo-driven mirror; PD, photodiode; BS, beam splitter; (b) optical pulses obtained when the LCLV is operating in the cavity and for a Doppler shift of 2 Hz (MPZ translating at v=0.62μm/s).

Fig. 2.
Fig. 2.

Pulse repetition rate as a function of the intracavity Doppler shift; continuous (dashed) line is the prediction for a passive cavity in the redshift and blueshift regions occurring for negative (positive) detuning.

Fig. 3.
Fig. 3.

Different shapes of the pulse observed for redshift and blueshift, ΔνD=±1Hz, respectively.

Fig. 4.
Fig. 4.

(a) Two beam-coupling gain (dots: experimental data; solid line: theoretical fit), and (b) corresponding group delay versus the intracavity Doppler shift.

Fig. 5.
Fig. 5.

(a) Cavity transmission in the presence of beam coupling (solid line) and for a passive cavity (dotted line); (b) resonance evolution with the Doppler shift.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A˜c=eιkpdn0Ac+ιkpdΔneιkpdn0Ap,
τΔn.=Δn+n2ApAc,
Ac=ιkpdΔnReι(kpdn0+Δφc)1Reι(kpdn0+Δφc)Ap.

Metrics