Abstract

Rayleigh scattering in optical fibers has the potential to degrade the performance of low-noise opto-electronic systems. In this Letter, we measure the Rayleigh gain spectrum of optical fibers. Our data show the gain bandwidth and the offset frequency of the Rayleigh gain peak. Both the gain bandwidth and the peak frequency are 3 orders of magnitude lower than the corresponding values for bulk silica. Our data suggest that the narrower gain bandwidth and frequency shift that we observe are due to guided entropy modes in the fiber. This effect is fundamental and will be present in any medium in which light is guided so that transverse intensity gradients exist.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  2. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968).
  3. E. L. Buckland, “Origin of the third-order nonlinear optical response in silica fibers,” Ph.D. dissertation (University of Rochester, 1997).
  4. R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).
    [CrossRef]
  5. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, Opt. Express 18, 22958 (2010).
    [CrossRef]
  6. P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
    [CrossRef]
  7. P. A. Williams, W. C. Swann, and N. R. Newbury, J. Opt. Soc. Am. B 25, 1284 (2008).
    [CrossRef]
  8. E. Rubiola, K. Volyanskiy, and L. Larger, in Proceedings of the IEEE Frequency Control Symposium (IEEE, 2009), pp. 50–53.

2010 (1)

2008 (1)

2007 (1)

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).
[CrossRef]

Arcizet, O.

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Bao, X.

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Buckland, E. L.

E. L. Buckland, “Origin of the third-order nonlinear optical response in silica fibers,” Ph.D. dissertation (University of Rochester, 1997).

Chen, L.

Del’Haye, P.

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Dong, Y.

Fabelinskii, I. L.

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968).

Holzwarth, R.

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Kippenberg, T. J.

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Larger, L.

E. Rubiola, K. Volyanskiy, and L. Larger, in Proceedings of the IEEE Frequency Control Symposium (IEEE, 2009), pp. 50–53.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).
[CrossRef]

Liang, H.

Newbury, N. R.

Rubiola, E.

E. Rubiola, K. Volyanskiy, and L. Larger, in Proceedings of the IEEE Frequency Control Symposium (IEEE, 2009), pp. 50–53.

Schliesser, P.

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).
[CrossRef]

Swann, W. C.

Volyanskiy, K.

E. Rubiola, K. Volyanskiy, and L. Larger, in Proceedings of the IEEE Frequency Control Symposium (IEEE, 2009), pp. 50–53.

Wilken, T.

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Williams, P. A.

Zhu, T.

J. Opt. Soc. Am. B (1)

Nature (1)

P. Del’Haye, P. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).
[CrossRef]

Other (4)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968).

E. L. Buckland, “Origin of the third-order nonlinear optical response in silica fibers,” Ph.D. dissertation (University of Rochester, 1997).

E. Rubiola, K. Volyanskiy, and L. Larger, in Proceedings of the IEEE Frequency Control Symposium (IEEE, 2009), pp. 50–53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the homodyne detection system used to measure the Rayleigh backscattered spectrum.

Fig. 2.
Fig. 2.

A plot of the backscattered intensity spectrum from a 6 km spool of single-mode fiber as well as the incident noise spectrum of the input CW beam. The input optical power was 1 mW.

Fig. 3.
Fig. 3.

Plot of the Rayleigh backscattered gain spectrum from a 6 km spool of single-mode fiber with a 1 mW incident optical beam. A theoretical fit to experimental data is included for comparison.

Fig. 4.
Fig. 4.

Plots of the Rayleigh backscattered gain spectra from a 6 km spool of single-mode fiber.

Fig. 5.
Fig. 5.

Plots of the Rayleigh backscattered spectra from single-mode optical fibers for a 1 mW incident beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δρ~=(δρδp)sΔp~+(δρδs)pΔs~,
GR(ω)=AR[4ω/ΓR1+(2ω/ΓR)2],

Metrics