Abstract

The effect of absorption enhancement with metallic nanoparticles on solar cell surfaces is often confused with various optical processes. In this work, the effective absorption rates in the active materials of solar cells are explicitly calculated including all possible factors. The results show that, although the total absorption is highly enhanced in general, the effective absorption in the active region is not much enhanced and even strongly reduced in the blue–violet regime. As the solar spectrum is considered, the integrated absorbed power in the solar cell materials is shown to be similar for structures with or without metallic nanoparticles.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles

Fu-Ji Tsai, Jyh-Yang Wang, Jeng-Jie Huang, Yean-Woei Kiang, and C. C. Yang
Opt. Express 18(S2) A207-A220 (2010)

Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications

Keya Zhou, Sang-Won Jee, Zhongyi Guo, Shutian Liu, and Jung-Ho Lee
Appl. Opt. 50(31) G63-G68 (2011)

Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell

Wenzhen Ren, Guanghui Zhang, Yukun Wu, Huaiyi Ding, Qinghe Shen, Kun Zhang, Junwen Li, Nan Pan, and Xiaoping Wang
Opt. Express 19(27) 26536-26550 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription