Abstract

We report on the observation of self-induced nonlinear spin–orbit interaction of light driven by Kerr orientational optical nonlinearities in liquid crystals. It consists of the self-induced spin-to-orbital nonlinear conversion for the angular momentum of light. The optical angular momentum conversion is driven by the creation of a topological liquid crystal defect by the light itself. Moreover, we show that such a nonlinear process can be significantly enhanced by using additional electric fields.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).
    [CrossRef]
  2. K. Y. Bliokh, Phys. Rev. Lett. 97, 043901 (2006).
    [CrossRef]
  3. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
    [CrossRef]
  4. S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
    [CrossRef]
  5. E. Brasselet, Phys. Rev. A 82, 063836 (2010).
    [CrossRef]
  6. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
    [CrossRef]
  7. E. Brasselet and C. Loussert, Opt. Lett. 36, 719 (2011).
    [CrossRef]
  8. E. Brasselet, Opt. Lett. 34, 3229 (2009).
    [CrossRef]
  9. A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
    [CrossRef]
  10. A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am. A 20, 163 (2003).
    [CrossRef]
  11. G. Biener, A. Niv, V. Kleiner, and E. Hasman, Opt. Lett. 27, 1875 (2002).
    [CrossRef]
  12. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
    [CrossRef]
  13. N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
    [CrossRef]
  14. E. Brasselet, A. Lherbier, and L. J. Dubé, J. Opt. Soc. Am. B 23, 36 (2006).
    [CrossRef]
  15. E. Brasselet, J. Opt. 12, 124005 (2010).
    [CrossRef]

2011 (1)

2010 (4)

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
[CrossRef]

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

E. Brasselet, Phys. Rev. A 82, 063836 (2010).
[CrossRef]

E. Brasselet, J. Opt. 12, 124005 (2010).
[CrossRef]

2009 (2)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef]

E. Brasselet, Opt. Lett. 34, 3229 (2009).
[CrossRef]

2006 (2)

2005 (1)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).
[CrossRef]

2003 (2)

2002 (1)

1986 (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Aiello, A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
[CrossRef]

Alonso, M. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
[CrossRef]

Biener, G.

Bliokh, K. Y.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
[CrossRef]

K. Y. Bliokh, Phys. Rev. Lett. 97, 043901 (2006).
[CrossRef]

Brasselet, E.

E. Brasselet and C. Loussert, Opt. Lett. 36, 719 (2011).
[CrossRef]

E. Brasselet, Phys. Rev. A 82, 063836 (2010).
[CrossRef]

E. Brasselet, J. Opt. 12, 124005 (2010).
[CrossRef]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef]

E. Brasselet, Opt. Lett. 34, 3229 (2009).
[CrossRef]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Canuel, B.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Ciattoni, A.

Cincotti, G.

Fadeyeva, T.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Genin, E.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Hasman, E.

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef]

Karimi, E.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Kleiner, V.

Li, J.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Loussert, C.

Marrucci, L.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Milano, L.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef]

Mosca, S.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).
[CrossRef]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).
[CrossRef]

Niv, A.

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).
[CrossRef]

Ostrovskaya, E. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
[CrossRef]

Palma, C.

Piccirillo, B.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Rosa, R. D.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Santamato, E.

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Volyar, A.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Wu, S.-T.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Zel’dovich, B. Y.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

J. Appl. Phys. (1)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

J. Opt. (1)

E. Brasselet, J. Opt. 12, 124005 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Opt. Lett. (3)

Opt. Spectrosc. (1)

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Phys. Rev. A (3)

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, Phys. Rev. A 82, 063825 (2010).
[CrossRef]

S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. D. Rosa, E. Genin, L. Milano, and E. Santamato, Phys. Rev. A 82, 043806 (2010).
[CrossRef]

E. Brasselet, Phys. Rev. A 82, 063836 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef]

M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).
[CrossRef]

K. Y. Bliokh, Phys. Rev. Lett. 97, 043901 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of our experiment. A circularly polarized Gaussian beam impinges at normal incidence onto a nematic film with perpendicular alignment at rest; see panel (a), where lines refer to the director field. (a) The linear STOC is characterized by the conversion efficiency η=η0. (b) When a topological defect is created by light, the vortex contribution to the output field increases. This leads to a nonlinear STOC efficiency of the form η=η0+Δη.

Fig. 2.
Fig. 2.

(a) STOC efficiency in the linear regime, η0, versus reduced thickness L/Lc for MLC-2079 (L=15 and 30 μm) and E7 (L=50, 57, and 92 μm) nematic films. The external beam divergence angle is either θ0ext=3.8°, 6.2°, or 15.2°, with θ0θ0ext/n. The solid curve refers to the universal behavior η0(L/Lc), whose expression is given in the text. (b) Illustration of the self-induced nonlinear STOC as a result of the creation of a liquid crystal defect by light for a 92-μm-thick E7 film located at z=400μm and illumination condition such as η0=0.29.

Fig. 3.
Fig. 3.

Nonlinear STOC for a 92-μm-thick E7 nematic film. The measured η is plotted as a function of the input beam power P for different values of η0 and various sample locations z=200 (triangles), 300 (squares), 400 (circles), 500 (diamonds) and 600 μm (inverted triangles); curves are guides for the eyes. The shaded regions refer to the values explored by η predicted by our topological optical reorientation model for the range of parameters used in experiments.

Fig. 4.
Fig. 4.

Electric field enhancement of the nonlinear STOC efficiency. (a) Δη versus the reduced applied voltage U/UF at fixed input beam power. (b) Δη versus the reduced power P/PF at fixed applied voltage. Curves are guides for the eyes. The data correspond to a MLC-2079 nematic film with thickness L=30μm under illumination conditions such as w=60μm and η0=0.41.

Metrics