Abstract

We demonstrate power insensitive silicon microring resonators without the need for active feedback control. The passive control of the resonance is achieved by utilizing the compensation of two counteracting processes, free carrier dispersion blueshift and thermo-optic redshift. In the fabricated devices, the resonant wavelength shifts less than one resonance linewidth for dropped power up to 335 μW, more than fivefold improvement in cavity energy handling capability compared to regular microrings.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, IEEE J. Sel. Top. Quantum Electron. 6, 1312 (2000).
    [CrossRef]
  2. R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
    [CrossRef]
  3. M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
    [CrossRef]
  4. G. S. Oehrlein, Mater. Sci. Eng., B 4, 441 (1989).
    [CrossRef]
  5. M. Borselli, T. J. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
    [CrossRef]
  6. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 17305 (2007).
    [CrossRef]
  7. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
    [CrossRef]
  8. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
    [CrossRef]
  9. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
    [CrossRef]
  10. C. Schmidt, A. Chipouline, T. Kasebier, E. B. Kley, A. Tunnermann, and T. Pertsch, Opt. Lett. 35, 3351 (2010).
    [CrossRef]
  11. I. Grudinin, H. Lee, T. Chen, and K. Vahala, Opt. Express 19, 7365 (2011).
    [CrossRef]
  12. M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).
  13. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, Opt. Express 17, 4752 (2009).
    [CrossRef]
  14. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, Opt. Express 19, 6284 (2011).
    [CrossRef]
  15. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef]
  16. J. V. Campenhout, W. M. J. Green, X. Liu, S. Assefa, R. M. Osgood, and Y. A. Vlasov, Opt. Lett. 34, 1534 (2009).
    [CrossRef]

2011 (2)

2010 (1)

2009 (2)

2008 (1)

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

2007 (1)

2006 (2)

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

2005 (2)

2004 (2)

V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

2000 (1)

D. A. B. Miller, IEEE J. Sel. Top. Quantum Electron. 6, 1312 (2000).
[CrossRef]

1989 (1)

G. S. Oehrlein, Mater. Sci. Eng., B 4, 441 (1989).
[CrossRef]

Adibi, A.

Albonesi, D. H.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
[CrossRef]

Assefa, S.

Barclay, P. E.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Borselli, M.

Campenhout, J. V.

Cardenas, J.

Chen, G. Q.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Chen, L.

Chen, T.

Chipouline, A.

Dong, C.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Fauchet, P. M.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Gaddam, V.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Green, W. M. J.

Grudinin, I.

Haurylau, M.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

He, L.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Johnson, T. J.

Kasebier, T.

Kley, E. B.

Lee, H.

Li, Q.

Lipson, M.

Liu, X.

Luo, L. W.

Miller, D. A. B.

D. A. B. Miller, IEEE J. Sel. Top. Quantum Electron. 6, 1312 (2000).
[CrossRef]

Nelson, N. A.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Oehrlein, G. S.

G. S. Oehrlein, Mater. Sci. Eng., B 4, 441 (1989).
[CrossRef]

Osgood, R. M.

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Pertsch, T.

Poitras, C.

Poitras, C. B.

Preston, K.

Robinson, J. T.

Schmidt, C.

Soltani, M.

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 17305 (2007).
[CrossRef]

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).

Soref, R.

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

Srinivasan, K.

Tunnermann, A.

Vahala, K.

Vlasov, Y. A.

Wiederhecker, G. S.

Xiao, Y. F.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Yang, L.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Yegnanarayanan, S.

Zhang, J. D.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Zhu, J.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

D. A. B. Miller, IEEE J. Sel. Top. Quantum Electron. 6, 1312 (2000).
[CrossRef]

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
[CrossRef]

Mater. Sci. Eng., B (1)

G. S. Oehrlein, Mater. Sci. Eng., B 4, 441 (1989).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Other (1)

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the pump-probe setup for the measurement of free carrier lifetime. (b) Transmission spectrum of the etchless microring in quasi-TE polarization with λprobe=1489.484nm. (c) Measurement of carrier lifetime.

Fig. 2.
Fig. 2.

Measured transmitted power spectrum showing the net blueshift of the resonance with increasing laser input power (indicated in the inset). The laser is swept from longer wavelength to shorter wavelength.

Fig. 3.
Fig. 3.

(a) Density plot calculating the resonance shift as a function of thermal resistance and dropped power. (b) Optical microscope picture of the fabricated etchless silicon microring resonator with etched trenches. (c) Schematic diagram of the cross section to illustrate the depth of the trenches (not drawn to scale).

Fig. 4.
Fig. 4.

Measured resonance shift power dependence (at λ01542nm) of three different etchless silicon microring resonator devices: one without etched trenches (blue curve), one with just the silicon slab etched (green curve), and one with 300 μm deep trenches (red curve). The schematic insets on the right indicate the corresponding device cross section; the straight lines connecting the experimental data are guides for the eyes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλλ0ng(ΔnFC+ΔnT),

Metrics