Abstract

We explore the laser spot position (LSP) dependence of photothermal mode cooling in a microcantilever-based Fabry–Perot cavity. Experiments on photothermal cooling demonstrate that the direction of photothermal backaction on the first two cantilever modes is LSP dependent, which can be either parallel or antiparallel. A theoretical analysis of this LSP-dependent effect identifies the parallel and the antiparallel coupling regions along the lever. Simulation results are in quantitative agreement with our experimental observations. We conclude that the cooling limit imposed by photothermal mode coupling can be surmounted by operating in the parallel coupling region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription