Abstract

Owing to a geometric phase effect, an isosceles triangular aperture etched into thin metal film leads to constructive or destructive interference of surface plasmons excited at the two equal sides under linearly polarized illumination. Through appropriate spatial arrangement of an array of triangles, a highly confined focal spot beyond the diffraction limit can be achieved at the geometric center under azimuthally polarized excitation with field enhancement comparable to a bull’s eye plasmonic lens under radially polarized illumination. Through simply rotating the orientation of each triangle aperture by 90°, the plasmonic structure defocuses the same azimuthal polarization illumination due to destructive interference caused by a geometric π-phase difference between the two sides of the triangle and between the adjacent triangles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
    [CrossRef]
  2. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas Des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, Opt. Lett. 32, 2535 (2007).
    [CrossRef]
  3. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, Opt. Lett. 34, 3047 (2009).
    [CrossRef]
  4. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 10, 2075 (2010).
    [CrossRef]
  5. Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Opt. Lett. 35, 1755 (2010).
    [CrossRef]
  6. H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
    [CrossRef]
  7. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  8. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).
    [CrossRef]
  9. Q. Zhan, Opt. Lett. 31, 1726 (2006).
    [CrossRef]
  10. W. Chen and Q. Zhan, Opt. Lett. 34, 722 (2009).
    [CrossRef]
  11. G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139 (2009).
    [CrossRef]

2010 (3)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 10, 2075 (2010).
[CrossRef]

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Opt. Lett. 35, 1755 (2010).
[CrossRef]

2009 (5)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139 (2009).
[CrossRef]

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[CrossRef]

W. Chen and Q. Zhan, Opt. Lett. 34, 722 (2009).
[CrossRef]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, Opt. Lett. 34, 3047 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 10, 2075 (2010).
[CrossRef]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Opt. Lett. 35, 1755 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).
[CrossRef]

Bouhelier, A.

Bruyant, A.

Chen, W.

Cho, S.

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Colas Des Francs, G.

Dereux, A.

Huang, C.

Ignatovich, F.

Kang, M.

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Kim, H.

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Lee, B.

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Lee, S.

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139 (2009).
[CrossRef]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139 (2009).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 10, 2075 (2010).
[CrossRef]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Opt. Lett. 35, 1755 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).
[CrossRef]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, Opt. Lett. 34, 3047 (2009).
[CrossRef]

Novotny, L.

Park, J.

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Weeber, J.-C.

Wiederrecht, G. P.

Wu, Z.

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139 (2009).
[CrossRef]

Yang, S.

Zhan, Q.

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

Adv. Opt. Photon. (1)

Nano Lett. (5)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 10, 2075 (2010).
[CrossRef]

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Nano Lett. 10, 529 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, Nano Lett. 9, 2139 (2009).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of an isosceles triangular slot etched into 120-nm-thick silver film. A linearly polarized beam illuminates from the glass substrate side. (b) Explanation of phase mismatch of surface plasmon excitation with x-linear polarized illumination and (c) phase match with y-linear polarized illumination.

Fig. 2.
Fig. 2.

(a) Logarithmic electric energy density distribution at the air/silver interface with x- and (b) y-linearly polarized illuminations. (c) Corresponding phase distribution of longitudinal surface plasmon field with x- and (d) y-linearly polarized illuminations. The arrow line indicates the input polarization direction.

Fig. 3.
Fig. 3.

Logarithmic electric energy density distribution at the air/silver interface with eight isosceles triangles arranged in symmetric mode under azimuthally polarized illumination (illustrated by the arrows). Doughnut spot is obtained due to destructive interference of surface plasmons.

Fig. 4.
Fig. 4.

(a) Logarithmic electric energy density distribution at the air/silver interface with 32 isosceles triangles arranged in antisymmetric mode under azimuthally polarized illumination. A highly confined focal spot is obtained at the center. (b) Logarithmic electric energy density distribution of the same structure under radially polarized illumination. A solid spot with lower field enhancement is observed.

Fig. 5.
Fig. 5.

Logarithmic electric energy density distribution with 32 isosceles triangles arranged in symmetric mode under azimuthally polarized illumination.

Metrics