Abstract

We present an investigation of disordered photonic crystals (PhCs) based on the combination of photonic Wannier functions with the concept of the coherent potential approximation (CPA). In particular, we provide the theoretical foundation of a real-space cluster CPA that is causal, enforces the proper symmetries of the effective medium, and includes effects of multiple scattering of the same and nearby defects, which is essential for strong defects. Based on this, we present results for the density of states of disordered PhCs for different types of disorder. Our results are thus relevant to such diverse areas as random lasing and the analysis of fabricational imperfections in PhCs.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Disordered photonic crystals: a cluster coherent potential approach using photonic Wannier functions

Martin Köhl, Christian Wolff, and Kurt Busch
J. Opt. Soc. Am. B 31(10) 2246-2257 (2014)

The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities

Imanol Andonegui and Angel J. Garcia-Adeva
Opt. Express 21(4) 4072-4092 (2013)

Efficient construction of maximally localized photonic Wannier functions: locality criterion and initial conditions

Tobias Stollenwerk, Dmitry N. Chigrin, and Johann Kroha
J. Opt. Soc. Am. B 28(8) 1951-1958 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription