Abstract

We propose and demonstrate a low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Both radially and azimuthally polarized beams have been generated with very good modal symmetry and polarization purity higher than 94%. The radially and azimuthally polarized modes can be switched by simply adjusting the polarization controllers built in the fiber laser cavity. This fiber laser operates at a single wavelength of 1053 nm with a 3 dB linewidth of less than 0.02 nm, signal-to-background ratio of more than 55 dB, and a threshold as low as 16 mW. A new method for the polarization purity measurement is also proposed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  3. G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
    [CrossRef]
  4. F. Lu, W. Zheng, and Z. Huang, Opt. Lett. 34, 1870 (2009).
    [CrossRef]
  5. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, Opt. Lett. 32, 2535 (2007).
    [CrossRef]
  6. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  7. M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329–334 (2007).
    [CrossRef]
  8. R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
    [CrossRef]
  9. V. V. G. K. Inavalli and N. K. Viswanathan, Opt. Commun. 283, 861 (2010).
    [CrossRef]
  10. T. Grosjean, M. Suarez, and A. Sabac, Appl. Phys. Lett. 93, 231106 (2008).
    [CrossRef]
  11. R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, Opt. Express 18, 10834 (2010).
    [CrossRef]
  12. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, J. Lightwave Technol. 18, 230 (2000).
    [CrossRef]
  13. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
    [CrossRef]

2010

V. V. G. K. Inavalli and N. K. Viswanathan, Opt. Commun. 283, 861 (2010).
[CrossRef]

R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, Opt. Express 18, 10834 (2010).
[CrossRef]

2009

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[CrossRef]

F. Lu, W. Zheng, and Z. Huang, Opt. Lett. 34, 1870 (2009).
[CrossRef]

2008

T. Grosjean, M. Suarez, and A. Sabac, Appl. Phys. Lett. 93, 231106 (2008).
[CrossRef]

2007

2004

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

2003

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

2002

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

2000

1999

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Bouhelier, A.

Bruyant, A.

Colas des Francs, G.

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Dereux, A.

Djambova, T. V.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Grosjean, T.

T. Grosjean, M. Suarez, and A. Sabac, Appl. Phys. Lett. 93, 231106 (2008).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Gu, C.

Gupta, S.

Haus, J. W.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Huang, C.

Huang, Z.

Ibarra-Escamilla, B.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Ignatovich, F.

Inavalli, V. V. G. K.

V. V. G. K. Inavalli and N. K. Viswanathan, Opt. Commun. 283, 861 (2010).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Lu, F.

Meier, M.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Ming, H.

Mizunami, T.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Niiho, T.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Novotny, L.

Petrov, D.

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Powers, P. E.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Sabac, A.

T. Grosjean, M. Suarez, and A. Sabac, Appl. Phys. Lett. 93, 231106 (2008).
[CrossRef]

Singh, G. P.

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Suarez, M.

T. Grosjean, M. Suarez, and A. Sabac, Appl. Phys. Lett. 93, 231106 (2008).
[CrossRef]

Viswanathan, N. K.

V. V. G. K. Inavalli and N. K. Viswanathan, Opt. Commun. 283, 861 (2010).
[CrossRef]

Volpe, G.

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Wang, A.

Weeber, J.-C.

Wiederrecht, G. P.

Xu, L.

Zhan, Q.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[CrossRef]

Zheng, R.

Zheng, W.

Zhou, R.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. A

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Appl. Phys. Lett.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

T. Grosjean, M. Suarez, and A. Sabac, Appl. Phys. Lett. 93, 231106 (2008).
[CrossRef]

J. Lightwave Technol.

J. Phys. D

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Opt. Commun.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

V. V. G. K. Inavalli and N. K. Viswanathan, Opt. Commun. 283, 861 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Proc. SPIE

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of the fiber laser design. OSS (red spot), offset splicing spot; PC, polarization controller. The single-mode fiber is illustrated by the black line at the left, and the few-mode fiber is illustrated with the blue line at the right.

Fig. 2.
Fig. 2.

Microscope image of the lateral offset splicing spot along the few-mode fiber.

Fig. 3.
Fig. 3.

Transmission spectrum of the few-mode FBG.

Fig. 4.
Fig. 4.

Intensity distribution of the radially polarized beam (a) without a polarizer and (b)–(e) after passing through a linear polarizer with transmission axis orientation denoted by the arrows.

Fig. 5.
Fig. 5.

Intensity distribution of azimuthally polarized beam (a) without a polarizer and (b)–(e) after passing through a linear polarizer.

Fig. 6.
Fig. 6.

Laser output power versus pump power. The solid red line is a linear fit for the output over the threshold.

Fig. 7.
Fig. 7.

Spectrum of the laser output. The central wavelength is 1053 nm and the 3 dB linewidth is less than 0.02 nm.

Metrics