Abstract

We developed an ultrahigh-resolution full-field optical coherence tomography (FF-OCT) microscope that is based on the spatial, rather than the temporal, coherence gating. The microscope is capable of observing three-dimensional microbiological structures as small as 0.4μm×0.4μm×1.0μm (xyz) using quasi-monochromatic light and a liquid crystal retarder. Unlike traditional FF-OCT systems, this microscope can be operated in high resolution for any preferable wavelength with minimized defocusing and dispersion effects. High-resolution images of an onion cell are presented.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells

Tulsi Anna, Vishal Srivastava, Dalip Singh Mehta, and Chandra Shakher
Appl. Opt. 50(34) 6343-6351 (2011)

Time-domain optical coherence tomography with digital holographic microscopy

Pia Massatsch, Florian Charrière, Etienne Cuche, Pierre Marquet, and Christian D. Depeursinge
Appl. Opt. 44(10) 1806-1812 (2005)

Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography

Avner Safrani and Ibrahim Abdulhalim
Appl. Opt. 50(18) 3021-3027 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription