Abstract

We developed an ultrahigh-resolution full-field optical coherence tomography (FF-OCT) microscope that is based on the spatial, rather than the temporal, coherence gating. The microscope is capable of observing three-dimensional microbiological structures as small as 0.4μm×0.4μm×1.0μm (xyz) using quasi-monochromatic light and a liquid crystal retarder. Unlike traditional FF-OCT systems, this microscope can be operated in high resolution for any preferable wavelength with minimized defocusing and dispersion effects. High-resolution images of an onion cell are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef]
  2. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
    [CrossRef]
  4. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, Appl. Opt. 43, 2874 (2004).
    [CrossRef]
  5. P. de Groot and X. Colonna de Lega, Appl. Opt. 43, 4821 (2004).
    [CrossRef]
  6. A. Dubois, A. C. Boccara, and L. Vabre, Opt. Lett. 24, 309 (1999).
    [CrossRef]
  7. A. Safrani and I. Abdulhalim, Appl. Opt. 50, 3021 (2011).
    [CrossRef]
  8. S. Labiau, G. David, S. Gigan, and A. C. Boccara, Opt. Lett. 34, 1576 (2009).
    [CrossRef]
  9. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef]

2011

2009

2004

2002

1999

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Abdulhalim, I.

Beaurepaire, E.

Boccara, A. C.

Boccara, C.

Boppart, S. A.

Bouma, B. E.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Colonna de Lega, X.

David, G.

de Groot, P.

Drexler, W.

Dubois, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Fujimoto, J. G.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Gigan, S.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Grieve, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Ippen, E. P.

Kartner, F. X.

Labiau, S.

Lecaque, R.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Moneron, G.

Morgner, U.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Safrani, A.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Tearney, G. J.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

Vabre, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical system.

Fig. 2.
Fig. 2.

Experimental interferograms obtained from a 4.8 μm SiO2 thin film on Si substrate measured using different spatial and temporal coherence lengths (data is retrieved from a single pixel located at the center of the CCD). The experiments demonstrate the advantage of using a narrow wavelength range when high NA is used; high signal contrast is obtained. λ=580nm (a) NAeff0.8, FWHM=10nm, (b) NAeff0.8, FWHM=30nm, (c) NAeff0.8, FWHM=55nm, and (d) NAeff0.3, FWHM=55nm. Axes are not corrected with the layer refractive index (nSiO21.5).

Fig. 3.
Fig. 3.

Optical system resolution. (a) Derivative of the ESF obtained from a Ronchi rulings target (top left corner, bright-field image), with 200lp/mm, (b) Axial response of the OCT system obtained by the demodulation process.

Fig. 4.
Fig. 4.

Images of a single layer of an onion epithelium positioned on top of a microscope slide. (a) λ=710nm, ΔλFWHM=10nm OCT en face image showing the boundaries of a few cells, top surface. The white vertical dashed line designates the location of the cross-section image, (b) bottom surface image showing the deformed onion cell boundary with the underlying microscope slide, (c) cross-section image showing the profile of the cell with scanning steps of 0.5 μm, (d) bright-field image of the largest organelle in an onion cell, possibly the nucleus, and (e) λ=580nm, Δλ=10nm OCT image of the same scene as (d). The field in (a)–(c) is 70μm×50μm (x,y), whereas, in (d) and (e), the diameter of the FS image is 50 μm. We used 10 images for each phase in an overall imaging process of 1 s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(x,y,Δz,β)I0(x,y)×{1+γ(x,y)A[Δz(x,y)]cos{2πfz[Δz(x,y)]+β}},
γ(x,y)=2RRRS(x,y,)/[Rscat(x,y)+RR+RStotal(x,y)],
A[Δz(x,y)]=sinc{n0NA2πλ[Δz(x,y)]},
fz=n0λ/2(1NA2/4).

Metrics