Abstract

We propose a novel sideband interrogation technique with multiplex radio frequency intensity and phase modulation to measure the resonance frequency difference between two optical resonators. Based on this new technique, an ultrahighly sensitive fiber-optic static strain sensor system consisting of a pair of identical fiber Fabry–Perot interferometers is built by incorporating a cross-correlation data processing algorithm. A static strain resolution down to 0.8 nε is demonstrated experimentally, which makes the sensor system a useful tool for geophysical research applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ferraro and G. De Natale, Opt. Lasers Eng. 37, 115 (2002).
    [CrossRef]
  2. B. Lissak, A. Arie, and M. Tur, Opt. Lett. 23, 1930 (1998).
    [CrossRef]
  3. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, Opt. Lett. 30, 1923 (2005).
    [CrossRef]
  4. A. Arie, B. Lissak, and M. Tur, J. Lightwave Technol. 17, 1849 (1999).
    [CrossRef]
  5. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, Opt. Express 13, 2377 (2005).
    [CrossRef]
  6. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, Appl. Opt. 49, 4029 (2010).
    [CrossRef]
  7. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 72 (1993).
    [CrossRef]
  8. Q. Liu, T. Tokunaga, and Z. He, Opt. Lett. 36, 4044 (2011).
    [CrossRef]
  9. Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
    [CrossRef]
  10. Q. Liu, T. Tokunaga, and Z. He, Opt. Express 19, 20214 (2011).
    [CrossRef]
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  12. C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
    [CrossRef]

2011 (2)

2010 (2)

2007 (1)

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

2005 (2)

2002 (1)

P. Ferraro and G. De Natale, Opt. Lasers Eng. 37, 115 (2002).
[CrossRef]

1999 (1)

1998 (1)

1993 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Arie, A.

Berkoff, T. A.

Chow, J. H.

De Natale, G.

P. Ferraro and G. De Natale, Opt. Lasers Eng. 37, 115 (2002).
[CrossRef]

De Natale, P.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ferraro, P.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gagliardi, G.

Gray, M. B.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

He, Z.

Hotate, K.

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Huang, C.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Jing, W. C.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Kersey, A. D.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lam, T. T. Y.

Lissak, B.

Littler, I.

Littler, I. C. M.

Liu, K.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Liu, Q.

McClelland, D. E.

Morey, W. W.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Peng, G. D.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Salza, M.

Shaddock, D. A.

Tokunaga, T.

Tur, M.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Zhang, Y. M.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lasers Eng. (1)

P. Ferraro and G. De Natale, Opt. Lasers Eng. 37, 115 (2002).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup: CP, coupler; PM, phase modulator; IM, intensity modulator; CIR, circulator; PD, photodetector; FG, function generator; Mul, multiplier; LPF, low-pass filter.

Fig. 2.
Fig. 2.

Simultaneous interrogation of the two FFPIs with the carrier and a sideband, respectively.

Fig. 3.
Fig. 3.

Demodulated signals from the two FFPIs when the laser frequency is swept around the resonance frequency of the reference FFPI.

Fig. 4.
Fig. 4.

Extracted frequency difference between demodulated signals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

exp(iωt+iβsinΩMt)exp(iωt)×[1+J1(β)exp(iΩMt)J1(β)exp(iΩMt)],
F(t)=cos(ΩSt)+cos(ΩSt+ΩMt)cos(ΩStΩMt),
exp(iωt)[1+kF(t)]=exp(iωt)+0.5kexp(i(ω+ΩS)t)×[1+exp(iΩMt)exp(iΩMt)]+0.5kexp(i(ωΩS)t)×[1exp(iΩMt)+exp(iΩMt)],

Metrics