Abstract

The spectrum of modern illumination can be computationally tailored considering the visual effects of lighting. We investigated the spectral profiles of the white illumination maximizing the theoretical limits of the perceivable object colors. A large number of metamers with various degrees of smoothness were generated on and around the Planckian locus, and the volume in the CIELAB space of the optimal colors for each metamer was calculated. The optimal spectrum was found at the color temperature of around 5.7×103K, had three peaks at both ends of the visible band and at around 510 nm, and was 25% better than daylight and 35% better than Thornton’s prime color lamp.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Berns, Color Res. Appl. 36, 324 (2011).
    [CrossRef]
  2. G. He and L. Zheng, Opt. Lett. 35, 2955 (2010).
    [CrossRef]
  3. CIE, Method of Measuring and Specifying Colour Rendering Properties of Light Sources (Commission Internationale de l’Eclairage, 1995).
  4. H. Xu, Color Res. Appl. 18, 267 (1993).
    [CrossRef]
  5. J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, J. Opt. Soc. Am. A 25, 2918 (2008).
    [CrossRef]
  6. E. Schrödinger, Ann. Phys. 367, 603 (1920).
    [CrossRef]
  7. D. L. MacAdam, J. Opt. Soc. Am. 25, 249 (1935).
    [CrossRef]
  8. D. L. MacAdam, J. Opt. Soc. Am. 25, 361 (1935).
    [CrossRef]
  9. F. Martínez-Verdú, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, J. Opt. Soc. Am. A 24, 1501 (2007).
    [CrossRef]
  10. F. J. M. Schmitt, J. Opt. Soc. Am. 66, 601 (1976).
    [CrossRef]
  11. P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, Ophthalmic Physiolog. Opt. 30, 632 (2010).
    [CrossRef]
  12. K. Masaoka, Opt. Lett. 35, 2031 (2010).
    [CrossRef]
  13. C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).
    [CrossRef]
  14. W. A. Thornton, J. Opt. Soc. Am. 62, 191 (1972).
    [CrossRef]
  15. P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, J. Opt. Soc. Am. A 25, 623 (2008).
    [CrossRef]
  16. ISO, ISO3664:2000 Viewing Conditions (International Organization for Standardization, 2000).
  17. Y. Ohno, Opt. Eng. 44, 111302 (2005).
    [CrossRef]

2011 (1)

R. S. Berns, Color Res. Appl. 36, 324 (2011).
[CrossRef]

2010 (3)

G. He and L. Zheng, Opt. Lett. 35, 2955 (2010).
[CrossRef]

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, Ophthalmic Physiolog. Opt. 30, 632 (2010).
[CrossRef]

K. Masaoka, Opt. Lett. 35, 2031 (2010).
[CrossRef]

2008 (2)

2007 (1)

2005 (1)

Y. Ohno, Opt. Eng. 44, 111302 (2005).
[CrossRef]

1996 (1)

C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).
[CrossRef]

1993 (1)

H. Xu, Color Res. Appl. 18, 267 (1993).
[CrossRef]

1976 (1)

1972 (1)

1935 (2)

1920 (1)

E. Schrödinger, Ann. Phys. 367, 603 (1920).
[CrossRef]

Barber, C. B.

C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).
[CrossRef]

Berns, R. S.

R. S. Berns, Color Res. Appl. 36, 324 (2011).
[CrossRef]

Chorro, E.

de Fez, D.

Dobkin, D. P.

C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).
[CrossRef]

Felgueiras, P. E. R.

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, Ophthalmic Physiolog. Opt. 30, 632 (2010).
[CrossRef]

Gilabert, E.

He, G.

Huhdanpaa, H. T.

C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).
[CrossRef]

Linhares, J. M. M.

MacAdam, D. L.

Martínez-Verdú, F.

Masaoka, K.

Nascimento, S. M. C.

Ohno, Y.

Y. Ohno, Opt. Eng. 44, 111302 (2005).
[CrossRef]

Perales, E.

Pinto, P. D.

Schmitt, F. J. M.

Schrödinger, E.

E. Schrödinger, Ann. Phys. 367, 603 (1920).
[CrossRef]

Thornton, W. A.

Viqueira, V.

Xu, H.

H. Xu, Color Res. Appl. 18, 267 (1993).
[CrossRef]

Zheng, L.

ACM Trans. Math. Softw. (1)

C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).
[CrossRef]

Ann. Phys. (1)

E. Schrödinger, Ann. Phys. 367, 603 (1920).
[CrossRef]

Color Res. Appl. (2)

R. S. Berns, Color Res. Appl. 36, 324 (2011).
[CrossRef]

H. Xu, Color Res. Appl. 18, 267 (1993).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

Ophthalmic Physiolog. Opt. (1)

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, Ophthalmic Physiolog. Opt. 30, 632 (2010).
[CrossRef]

Opt. Eng. (1)

Y. Ohno, Opt. Eng. 44, 111302 (2005).
[CrossRef]

Opt. Lett. (2)

Other (2)

CIE, Method of Measuring and Specifying Colour Rendering Properties of Light Sources (Commission Internationale de l’Eclairage, 1995).

ISO, ISO3664:2000 Viewing Conditions (International Organization for Standardization, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Maximum volume of the Rösch–MacAdam color solid across the chromaticity grid sampled.

Fig. 2.
Fig. 2.

Black bars, spectrum producing the maximum Rösch–MacAdam color volume. The CCT was 5714 K, and the chromaticity was on the Planckian locus. The second and third rightmost emission lines are beyond the scale of the graph, and the heights are 0.57 and 0.22, respectively. Gray bars, spectrum obtained by averaging the metamers producing the largest 5% Rösch–MacAdam color volumes at 5714 K.

Fig. 3.
Fig. 3.

(a) MacAdam limits produced by the mean metamer (solid line), daylight (dashed line) with the same CCT, and the prime color (dotted line) with the same chromaticity as the mean metamer expressed in CIELAB and (b) the gamut areas by the same illuminants in CIE 1960 uniform chromaticity scale plotted in the same way as Fig. 3 of [14].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ=k=1M|fkEk|,

Metrics