Abstract

We present a new method that allows efficient spectral calibration for a polarization state analyzer. The procedure does not require any additional polarization optical element other than the polarization state analyzer itself. It uses a double-pass technique that can be achieved up to a very good precision. The method is illustrated using real measurements done at several wavelengths with a rotating wave plate polarization state analyzer. Alignment of axis as well as true retardation at a specific wavelength are easily obtained by a standard function fitting.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zallat, S. Ainouz, and M. P. Stoll, J. Opt. A 8, 807 (2006).
    [CrossRef]
  2. D. H. Goldstein and R. A. Chipman, J. Opt. Soc. Am. A 7, 693 (1990).
    [CrossRef]
  3. K. M. Twietmeyer and R. A. Chipman, Opt. Express 16, 11589 (2008).
    [CrossRef]
  4. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, Opt. Lett. 28, 616 (2003).
    [CrossRef]
  5. B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, Opt. Express 9, 225 (2001).
    [CrossRef]
  6. B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
    [CrossRef]
  7. L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
    [CrossRef]
  8. J. S. Tyo, Appl. Opt. 41, 619 (2002).
    [CrossRef]

2008

2006

J. Zallat, S. Ainouz, and M. P. Stoll, J. Opt. A 8, 807 (2006).
[CrossRef]

2005

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

2003

2002

J. S. Tyo, Appl. Opt. 41, 619 (2002).
[CrossRef]

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

2001

1990

Ainouz, S.

J. Zallat, S. Ainouz, and M. P. Stoll, J. Opt. A 8, 807 (2006).
[CrossRef]

Boulbry, B.

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, Opt. Express 9, 225 (2001).
[CrossRef]

Bousquet, B.

Cariou, J.

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

Chipman, R. A.

De Martino, A.

Drévillon, B.

Garcia-Caurel, E.

Goldstein, D. H.

Guern, Y.

Jin, L.

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

Kim, Y.-K.

Laude, B.

Le Jeune, B.

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, Opt. Express 9, 225 (2001).
[CrossRef]

Lotrian, J.

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, Opt. Express 9, 225 (2001).
[CrossRef]

Otani, Y.

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

Pellen, F.

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

Stoll, M. P.

J. Zallat, S. Ainouz, and M. P. Stoll, J. Opt. A 8, 807 (2006).
[CrossRef]

Takizawa, K.

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

Twietmeyer, K. M.

Tyo, J. S.

Umeda, N.

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

Zallat, J.

J. Zallat, S. Ainouz, and M. P. Stoll, J. Opt. A 8, 807 (2006).
[CrossRef]

Appl. Opt.

J. Opt. A

J. Zallat, S. Ainouz, and M. P. Stoll, J. Opt. A 8, 807 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, J. Phys. D 35, 2508 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the double-pass experimental configuration. S, unpolarized white light source; BS, nonpolarizing beam splitter cube; P, linear polarizer; W(α), rotating wave plate; M, silver mirror; F, interferential filter; D, detector.

Fig. 2.
Fig. 2.

Theoretical behavior of the normalized intensity ID versus rotation angle α. Solid curve, perfectly aligned (α0=0) quarter-wave plate (φ=90°); short-dashed curve, same plate with an initial alignment α0=15°; long-dashed curve, perfectly aligned (α0=0) wave plate of retardance φ=127°.

Fig. 3.
Fig. 3.

Measured intensities at 460 nm (circles, top curve) and 647 nm (circles, bottom curve). The solid curves are the best fits of Eq. (3) to data.

Fig. 4.
Fig. 4.

Measured retardances as a function of wavelength (circles) and fitted behavior according to Eq. (7) (solid curve). The cross symbol indicates the nominal retardance value at 632.8 nm as given by the supplier.

Tables (1)

Tables Icon

Table 1. Retrieved Retardance for Several Wavelengthsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SD=PWλ(α+α0)MWλ(αα0)P[Iλ000],
ID=12(3+cos(4[αα0])+2cos(2φ)sin2(2[αα0])),
ID=2sin2(φ)(1cos(4[αα0])).
Qmax(ID(α))=2,qmin(ID(α))=2cos2φ,
{φ=cos1qQα0={α:ID(α)=Q}.
φλ=2πλ(none)e,
φλ1λ(A+Bλ2).

Metrics