Abstract

We experimentally demonstrate a wideband near-perfect light absorber in the midwave IR region using a multiplexed plasmonic metal structure. The wideband near-perfect light absorber is made of two different size gold metal squares multiplexed on a thin dielectric spacing layer on top of a thick metal layer in each unit cell. We also fabricate regular nonmultiplexed structure perfect light absorbers. The multiplexed structure IR absorber absorbs more than 98% of the incident light over a much wider spectral band than regular nonmultiplexed structure perfect light absorbers in the midwave IR region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, Philos. Mag. 4, 396 (1902).
  2. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  3. O. Hunderi and H. P. Myers, J. Phys F. 3, 683 (1973).
    [CrossRef]
  4. M. C. Hutley and D. Maystre, Opt. Commun. 19, 431 (1976).
    [CrossRef]
  5. E. Popov, L. Tsonev, and D. Maystre, J. Mod. Opt. 37, 379 (1990).
    [CrossRef]
  6. E. Popov, L. Tsonev, and D. Maystre, Appl. Opt. 33, 5214 (1994).
    [CrossRef]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  8. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).
    [CrossRef]
  9. E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, Opt. Express 16, 6146 (2008).
    [CrossRef]
  10. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
    [CrossRef]
  11. Y. Avitzour, Y. A. Urzhumov, and Gennady Shvets, Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  12. C. Hu, Z. Zhao, X. Chen, and X. Luo, Opt. Express 17, 11039 (2009).
    [CrossRef]
  13. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef]
  14. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
    [CrossRef]
  15. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
    [CrossRef]
  16. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, Opt. Express 17, 16745 (2009).
    [CrossRef]
  17. J. Guo, Y. Zou, H. Leong, and B. Zhang, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWB4.
  18. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  19. M. J. Dodge, Appl. Opt. 23, 1980 (1984).
    [CrossRef]

2010 (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

2009 (3)

2008 (4)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).
[CrossRef]

E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, Opt. Express 16, 6146 (2008).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

1998 (1)

1994 (1)

1990 (1)

E. Popov, L. Tsonev, and D. Maystre, J. Mod. Opt. 37, 379 (1990).
[CrossRef]

1984 (1)

1976 (1)

M. C. Hutley and D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

1973 (1)

O. Hunderi and H. P. Myers, J. Phys F. 3, 683 (1973).
[CrossRef]

1965 (1)

1902 (1)

R. W. Wood, Philos. Mag. 4, 396 (1902).

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Averitt, R. D.

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and Gennady Shvets, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Bingham, C. M.

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Chen, X.

de Abajo, F. J. García

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Derrick, G. H.

Djurisic, A. B.

Dodge, M. J.

Elazar, J. M.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Guo, J.

J. Guo, Y. Zou, H. Leong, and B. Zhang, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWB4.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Hessel, A.

Hu, C.

Hunderi, O.

O. Hunderi and H. P. Myers, J. Phys F. 3, 683 (1973).
[CrossRef]

Huthley, M. C.

Hutley, M. C.

M. C. Hutley and D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).
[CrossRef]

Leong, H.

J. Guo, Y. Zou, H. Leong, and B. Zhang, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWB4.

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Luo, X.

Majewski, M. L.

Maystre, D.

McPhedran, R. C.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Myers, H. P.

O. Hunderi and H. P. Myers, J. Phys F. 3, 683 (1973).
[CrossRef]

Neviere, M.

Oliner, A. A.

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Popov, E.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Rakic, A. D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Shvets, Gennady

Y. Avitzour, Y. A. Urzhumov, and Gennady Shvets, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Tao, H.

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Tsonev, L.

E. Popov, L. Tsonev, and D. Maystre, Appl. Opt. 33, 5214 (1994).
[CrossRef]

E. Popov, L. Tsonev, and D. Maystre, J. Mod. Opt. 37, 379 (1990).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and Gennady Shvets, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Wood, R. W.

R. W. Wood, Philos. Mag. 4, 396 (1902).

Zhang, B.

J. Guo, Y. Zou, H. Leong, and B. Zhang, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWB4.

Zhang, X.

Zhao, Z.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Zou, Y.

J. Guo, Y. Zou, H. Leong, and B. Zhang, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWB4.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

J. Mod. Opt. (1)

E. Popov, L. Tsonev, and D. Maystre, J. Mod. Opt. 37, 379 (1990).
[CrossRef]

J. Phys F. (1)

O. Hunderi and H. P. Myers, J. Phys F. 3, 683 (1973).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Nat. Photon. (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photon. 2, 299 (2008).
[CrossRef]

Opt. Commun. (1)

M. C. Hutley and D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

Opt. Express (4)

Philos. Mag. (1)

R. W. Wood, Philos. Mag. 4, 396 (1902).

Phys. Rev. B (1)

Y. Avitzour, Y. A. Urzhumov, and Gennady Shvets, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Other (1)

J. Guo, Y. Zou, H. Leong, and B. Zhang, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MWB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Regular nonmultiplexed perfect light absorber structure and (b) multiplexed perfect light absorber structure.

Fig. 2.
Fig. 2.

Calculated power reflections from three perfect light absorbers. The dotted blue curve is the power reflection from the perfect absorber structure with one 815 nm gold square in the unit cell. The black dashed curve is the power reflection from the perfect absorber with one 865 nm metal square in the unit cell. The solid red curve is the power reflection from the multiplexed structure perfect absorber with two gold metal squares in the unit cell.

Fig. 3.
Fig. 3.

Electric field intensity distributions in the center plane of the MgF2 spacing layer in the unit cell of the multiplexed absorber structure: (a) electric field intensity distribution at 3.35 μm wavelength, (b) electric field intensity distribution at 3.395 μm wavelength in the center of the wide absorption band, (c) electric field intensity distribution at 3.45 μm wavelength, and (d) electric field intensity distribution at 4.0 μm, which is outside of the absorption band.

Fig. 4.
Fig. 4.

SEM images of the gold squares in the fabricated perfect light absorbers: (a) regular nonmultiplexed structure including one 815 nm gold square in the unit cell and (b) wideband multiplexed structure including 815 nm and 865 nm gold squares in the unit cell.

Fig. 5.
Fig. 5.

Measured power reflection versus the wavelength from the multiplexed gold metal structure perfect absorber (solid red curve), the nonmultiplexed structure absorber of 815nm×815nm metal square (dotted blue curve), the nonmultiplexed structure absorber of 865nm×865nm metal square (dashed black curve) in the unit cells.

Metrics