Abstract

We report all-fiber polarization interference filters, known as Lyot and Lyot-Őhman filters, based on alternative concatenation of UV-inscribed fiber gratings with structure tilted at 45° and polarization maintaining (PM) fiber cavities. Such filters generate comb-like transmission of linear polarization output. The free spectral range (FSR) of a single-stage (Lyot) filter is PM fiber cavity length dependent, as a 20 cm long cavity showed a 26.6 nm FSR while the 40 cm one exhibited a 14.8 nm FSR. Furthermore, we have theoretically and experimentally demonstrated all-fiber 2-stage and 3-stage Lyot-Őhman filters, giving more freedom in tailoring the transmission characteristics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lyot, C. R. Acad. Sci. (Paris) 197, 1593 (1933).
  2. Y. Őhman, Nature 141, 291 (1938).
  3. A. Gorman and D. Fletcher-Holmes, Opt. Express 18, 5602 (2010).
    [CrossRef]
  4. O. Aharon and I. Abdulhalim, Opt. Express 17, 11426 (2009).
    [CrossRef]
  5. M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
    [CrossRef]
  6. C. O’Riordan, M. J. Connelly, and Pr. M. Anandarajah, Opt. Commun. 281, 3538 (2008).
    [CrossRef]
  7. M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
    [CrossRef]
  8. G. Meltz, W. W. Morey, and W. H. Glenn, presented at the Optical Fiber Conference, January 22, 1990, paper TuG1.
  9. P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
    [CrossRef]
  10. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
    [CrossRef]
  11. Z. Yan, C. Mou, X. Chen, K. Zhou, and L. Zhang, J. Lightwave Technol. 29, 2715 (2011).
    [CrossRef]
  12. K. Zhou, L. Zhang, and I. Bennion, Opt. Lett. 30, 1285 (2005).
    [CrossRef]
  13. K. Özgören1 and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
    [CrossRef]

2011 (1)

2010 (2)

2009 (2)

O. Aharon and I. Abdulhalim, Opt. Express 17, 11426 (2009).
[CrossRef]

M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
[CrossRef]

2008 (1)

C. O’Riordan, M. J. Connelly, and Pr. M. Anandarajah, Opt. Commun. 281, 3538 (2008).
[CrossRef]

2006 (1)

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

2005 (1)

2002 (1)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

2000 (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

1938 (1)

Y. Őhman, Nature 141, 291 (1938).

1933 (1)

B. Lyot, C. R. Acad. Sci. (Paris) 197, 1593 (1933).

Abdulhalim, I.

Aharon, O.

Anandarajah, Pr. M.

C. O’Riordan, M. J. Connelly, and Pr. M. Anandarajah, Opt. Commun. 281, 3538 (2008).
[CrossRef]

Bennion, I.

Chen, J.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Chen, L.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Chen, X.

Chi, S.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Connelly, M. J.

C. O’Riordan, M. J. Connelly, and Pr. M. Anandarajah, Opt. Commun. 281, 3538 (2008).
[CrossRef]

Dai, X.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Ding, H.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Erdogan, T.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

Feng, K.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Fletcher-Holmes, D.

Franke, M.

M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
[CrossRef]

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, presented at the Optical Fiber Conference, January 22, 1990, paper TuG1.

Gorman, A.

Huang, M.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Ilday, F. Ö.

Lai, C.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Lin, T.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Lu, P.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Lyot, B.

B. Lyot, C. R. Acad. Sci. (Paris) 197, 1593 (1933).

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, presented at the Optical Fiber Conference, January 22, 1990, paper TuG1.

Mihailov, S. J.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, presented at the Optical Fiber Conference, January 22, 1990, paper TuG1.

Mou, C.

O’Riordan, C.

C. O’Riordan, M. J. Connelly, and Pr. M. Anandarajah, Opt. Commun. 281, 3538 (2008).
[CrossRef]

Ohman, Y.

Y. Őhman, Nature 141, 291 (1938).

Özgören1, K.

Paa, W.

M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
[CrossRef]

Smelser, C.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Stafast, H.

M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
[CrossRef]

Strasser, T. A.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

Triebel, W.

M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
[CrossRef]

Walker, R. B.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

Wei, C.

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

Yan, Z.

Zhang, L.

Zhou, K.

Appl. Phys. B (1)

M. Franke, W. Paa, W. Triebel, and H. Stafast, Appl. Phys. B 97, 421 (2009).
[CrossRef]

C. R. Acad. Sci. (Paris) (1)

B. Lyot, C. R. Acad. Sci. (Paris) 197, 1593 (1933).

IEE Proc. Optoelectron. (1)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, IEE Proc. Optoelectron. 149, 211 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, IEEE Photon. Technol. Lett. 12, 1352 (2000).
[CrossRef]

M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. ChiIEEE Photon. Technol. Lett. 18, 172 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

Y. Őhman, Nature 141, 291 (1938).

Opt. Commun. (1)

C. O’Riordan, M. J. Connelly, and Pr. M. Anandarajah, Opt. Commun. 281, 3538 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

G. Meltz, W. W. Morey, and W. H. Glenn, presented at the Optical Fiber Conference, January 22, 1990, paper TuG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Configuration of an all-fiber Lyot filter using two 45°-TFGs and a PM fiber cavity. (b) Configuration of an all-fiber 3-stage Lyot–Őhman filter using four 45°-TFGs with three PM fiber cavities at a ratio 4:2:1.

Fig. 2.
Fig. 2.

Spectral polarization extinction ratio over wavelength range from 1530 nm to 1608 nm. Inset: microscopic image of 45°-TFG structure in a PM fiber.

Fig. 3.
Fig. 3.

Polarization distribution of one of the 45°-TFGs UV-inscribed in PM fiber.

Fig. 4.
Fig. 4.

(a) Measured transmission spectra of three 45°-TFG based all-fiber Lyot filters with 20 cm, 40 cm, and 80 cm cavity length. (b) Experimentally measured and theoretically calculated the relationship between FSR of the filter and the length of PM fiber cavity.

Fig. 5.
Fig. 5.

Simulated (solid) and experimentally measured (dash) comblike transmission spectra of (a) 2-stage Lyot filter with PM fiber cavity length ratio 12 (20 cm and 40 cm) and (b) 3-stage Lyot filter with ratio 124 (20 cm, 40 cm, and 80 cm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M=(12)m×[0001]×[eiΔφ1+1eiΔφ11eiΔφ11eiΔφ1+1]×[0001][eiΔφm+1eiΔφm1eiΔφm1eiΔφm+1]×[0001]=(12)m[000(eiΔφ1+1)(eiΔφ2+1)(eiΔφm+1)]̲,
Δφm=2πLmΔn/λm=1,2,3,
T=cos2(Δφ1/2)cos2(Δφ2/2)cos2(Δφm/2).
FSRλ2/(LmΔn).

Metrics