Abstract

This Letter demonstrates a measurement technique based on frequency-to-time mapping and coherent detection, which enables the complete (i.e., amplitude and phase) characterization of dynamically reconfigurable photonic filters. We apply this technique to a unit cell from a silicon CMOS-compatible photonic lattice filter that has a rapidly changing transfer function with an 8.33 ns update time, 120 MHz spectral resolution, and 12 GHz bandwidth. These dynamic measurements allow characterization of transients, thermal effects, filter fidelity, and other time-dependent phenomena during switching.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, J. Lightwave Technol. 24, 4468 (2006).
    [CrossRef]
  2. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, Opt. Lett. 33, 1068(2008).
    [CrossRef]
  3. N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, Opt. Express 18, 24648 (2010).
    [CrossRef]
  4. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
    [CrossRef]
  5. E. J. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, J. Lightwave Technol. 29, 1611 (2011).
    [CrossRef]
  6. R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]
  7. K. Jinguji, J. Lightwave Technol. 14, 1882 (1996).
    [CrossRef]
  8. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, Nat. Photon. 4, 248 (2010).
    [CrossRef]
  9. N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, Opt. Express 18, 22988 (2010).
    [CrossRef]

2011 (2)

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

E. J. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, J. Lightwave Technol. 29, 1611 (2011).
[CrossRef]

2010 (3)

2008 (1)

2006 (1)

1996 (1)

K. Jinguji, J. Lightwave Technol. 14, 1882 (1996).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Agarwal, A.

Asghari, M.

Banwell, T.

Bennett, B.

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Coldren, L.

Ding, Z.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Djordjevic, S. S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Dong, P.

Feng, D.

Feng, N.-N.

Fontaine, N. K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, Nat. Photon. 4, 248 (2010).
[CrossRef]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, Opt. Express 18, 22988 (2010).
[CrossRef]

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, Opt. Lett. 33, 1068(2008).
[CrossRef]

Geisler, D. J.

Guan, B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Guzzon, R.

He, T.

Heritage, J. P.

Ibrahim, S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Jinguji, K.

K. Jinguji, J. Lightwave Technol. 14, 1882 (1996).
[CrossRef]

Johansson, L.

Lee, D. C.

Liang, H.

Lipson, M.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Luff, J. B.

Luo, L. W.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Menendez, R.

Norberg, E. J.

Okamoto, K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, Opt. Lett. 33, 1068(2008).
[CrossRef]

Parker, J.

Poitras, C. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

Qian, W.

Scott, R. P.

Soares, F. M.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, Nat. Photon. 4, 248 (2010).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Toliver, P.

Woodward, T. K.

Yang, C.

Yoo, S. J. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, Nat. Photon. 4, 248 (2010).
[CrossRef]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, Opt. Express 18, 22988 (2010).
[CrossRef]

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, Opt. Lett. 33, 1068(2008).
[CrossRef]

S. J. B. Yoo, J. Lightwave Technol. 24, 4468 (2006).
[CrossRef]

Zhou, L.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, Nat. Photon. 4, 248 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, IEEE Photon. Technol. Lett. 23, 42 (2011).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photon. (1)

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, Nat. Photon. 4, 248 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of a unit cell optical filter. Phase shifters are labeled as L1, R1, etc. (b) Pole-zero distribution when tuning from a bandpass filter (A) to a notch filter (B) by adjusting phase modulator R1. (c) Corresponding transmission of (b) between a bandpass filter (A) and a notch filter (B).

Fig. 2.
Fig. 2.

Experimental arrangement used to measure the dynamic reconfiguration of a unit cell silicon photonic filter. (a) Input optical signal with detail of a single pulse. (b) Output optical signal. (c) Modulation signal. AOM, acousto-optic modulator.

Fig. 3.
Fig. 3.

(a) Measured waveforms after the filter with a 2.5 MHz switching speed. (b) Detail of pulse A. (c) Fourier transform of A. (d) Normalized filter transfer function for pulse A. (e) 2D plot (spectrogram) showing the temporal evolution of the filter shape.

Fig. 4.
Fig. 4.

Modulation rate of 15 MHz; measured data shows switching between the bandpass and notch filter shapes for (a) low pole and (d) high pole filters. Measured complex transmission overlaid with fitted transmission for a low pole (b) notch filter and (c) bandpass filter, a high pole (e) notch filter and (f) bandpass filter. Insets in (b), (c) and (e), (f) show pole and zero locations.

Fig. 5.
Fig. 5.

Modulation rate of 30 MHz; measured data shows switching between the bandpass and notch filter shapes for (a) low pole and (d) high pole filters. Measured complex transmission overlaid with fitted transmission for a low pole (b) notch filter and (c) bandpass filter and a high pole (e) notch filter and (f) bandpass filter. Insets in (b), (c) and (e), (f) show pole and zero locations.

Metrics