Abstract

This Letter demonstrates a measurement technique based on frequency-to-time mapping and coherent detection, which enables the complete (i.e., amplitude and phase) characterization of dynamically reconfigurable photonic filters. We apply this technique to a unit cell from a silicon CMOS-compatible photonic lattice filter that has a rapidly changing transfer function with an 8.33 ns update time, 120 MHz spectral resolution, and 12 GHz bandwidth. These dynamic measurements allow characterization of transients, thermal effects, filter fidelity, and other time-dependent phenomena during switching.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription