Abstract

A polarization rotator, suitable for integration in a polarization diversity optical receiver fabricated in InP technology, is proposed. The device, based on a two steps waveguide rotator, includes tapered input and output ports that provide very low insertion loss (<0.04dB). An extinction ratio of 40 dB at 1550 nm wavelength is calculated, comparable or even superior to other state of the art polarization converters. The main advantage of the proposed design is the capability of implementation using a standard fabrication process with only two dry etch steps, significantly reducing complexity and cost.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Compact polarization rotators for integrated polarization diversity in InP-based waveguides

Daryl M. Beggs, Michele Midrio, and Thomas F. Krauss
Opt. Lett. 32(15) 2176-2178 (2007)

Ultrasmall Si-nanowire-based polarization rotator

Zhechao Wang and Daoxin Dai
J. Opt. Soc. Am. B 25(5) 747-753 (2008)

Low loss shallow-ridge silicon waveguides

Po Dong, Wei Qian, Shirong Liao, Hong Liang, Cheng-Chih Kung, Ning-Ning Feng, Roshanak Shafiiha, Joan Fong, Dazeng Feng, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(14) 14474-14479 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription