Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media

Not Accessible

Your library or personal account may give you access

Abstract

This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials

Indika Udagedara, Malin Premaratne, Ivan D. Rukhlenko, Haroldo T. Hattori, and Govind P. Agrawal
Opt. Express 17(23) 21179-21190 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved