Abstract

Two-dimensional (2D) polarization patterns are achieved by the interference of two pairs of beams with perpendicular planes of incidence and orthogonal polarizations (i.e. linear or circular). In both cases, imposing a phase shift of π/2 between consecutive beams contains the amplitude modulation of the optical field in the superposition region and, thus, pure 2D polarization patterns are created. The recording of these interference fields in a polarization-sensitive material, namely an amorphous azopolymer, creates reconfigurable 2D periodic microstructures with peculiar diffraction properties.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  2. C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  3. E. Nicolescu and M. J. Escuti, Appl. Opt. 49, 3900 (2010).
    [CrossRef]
  4. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
    [CrossRef]
  5. L. Z. Cai, X. L. Yang, and Y. R. Wang, J. Opt. Soc. Am. A 19, 2238 (2002).
    [CrossRef]
  6. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, Opt. Lett. 31, 3336 (2006).
    [CrossRef]
  7. A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, Appl. Opt. 47, 1973 (2008).
    [CrossRef]
  8. D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
    [CrossRef]
  9. V. Arrizón, S. Chavez-Cerda, U. Ruiz, and R. Carrada, Opt. Express 15, 16748 (2007).
    [CrossRef]
  10. M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011).
    [CrossRef]
  11. J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009).
    [CrossRef]
  12. V. Arrizón, D. Sánchez-de-la-Llave, G. Méndez, and U. Ruiz, Opt. Express 19, 10553 (2011).
    [CrossRef]
  13. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
    [CrossRef]
  14. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
    [CrossRef]
  15. C. Provenzano, G. Cipparrone, and A. Mazzulla, Appl. Opt. 45, 3929 (2006).
    [CrossRef]

2011 (2)

M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011).
[CrossRef]

V. Arrizón, D. Sánchez-de-la-Llave, G. Méndez, and U. Ruiz, Opt. Express 19, 10553 (2011).
[CrossRef]

2010 (2)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
[CrossRef]

E. Nicolescu and M. J. Escuti, Appl. Opt. 49, 3900 (2010).
[CrossRef]

2009 (2)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
[CrossRef]

J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009).
[CrossRef]

2008 (3)

A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, Appl. Opt. 47, 1973 (2008).
[CrossRef]

D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
[CrossRef]

2007 (1)

2006 (3)

2002 (1)

Arrizón, V.

Boguslawski, M.

M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011).
[CrossRef]

Cai, L. Z.

Carrada, R.

Chavez-Cerda, S.

Chen, K. P.

D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
[CrossRef]

Cipparrone, G.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
[CrossRef]

C. Provenzano, G. Cipparrone, and A. Mazzulla, Appl. Opt. 45, 3929 (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Cloutier, S. G.

Crawford, G. P.

Denz, C.

M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011).
[CrossRef]

J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009).
[CrossRef]

Dwivedi, A.

Escuti, M. J.

Gorkhali, S. P.

Joseph, J.

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
[CrossRef]

Lin, Y.

D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
[CrossRef]

Mazzulla, A.

Méndez, G.

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
[CrossRef]

Nicolescu, E.

Nikolova, L.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Ohlinger, K.

D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
[CrossRef]

Pagliusi, P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Provenzano, C.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

C. Provenzano, G. Cipparrone, and A. Mazzulla, Appl. Opt. 45, 3929 (2006).
[CrossRef]

Ramanujam, P. S.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Rose, P.

M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011).
[CrossRef]

J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009).
[CrossRef]

Ruiz, U.

Sánchez-de-la-Llave, D.

Shibaev, V. P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
[CrossRef]

Singh, K.

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
[CrossRef]

Terhalle, B.

Wang, Y. R.

Xavier, J.

Xu, D.

D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
[CrossRef]

Yang, X. L.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011).
[CrossRef]

D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010).
[CrossRef]

Macromolecules (1)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

2D polarization pattern for (a) OLP and (b) OCP configurations. Insets: Schemes of the four plane waves with orthogonal linear (a) and circular (b) polarizations and their representations in terms of Jones vectors.

Fig. 2.
Fig. 2.

Theoretical far field diffraction pattern of the (a), (b) OLP and (c), (d) OCP 2D holograms, calculated for linearly [(a), (c)] and circularly [(b), (d)] polarized probe beams, in the limit βcircβlin. The arrows and the dimension of the dots represent the polarization states and the intensity of the orders of diffraction, respectively. The relative amplitudes of the diffracted fields are reported in terms of βcirc and βlin.

Fig. 3.
Fig. 3.

Experimental setup for 2D polarization hologram recording. V and H, vertical and horizontal polarization; SLM, spatial light modulator; SF, spatial filter; L1 and L2, lenses; QWP and HWP, quarter- and half-wave plates at 45°; S, photosensitive polymer film.

Fig. 4.
Fig. 4.

Far field diffraction patterns of the (a), (b) OLP, and (c), (d) OCP 2D holograms for linearly [(a), (c)] and circularly [(b), (d)] polarized probe beams. The total diffraction efficiency η, the relative intensity (1×, 2×, and 4×), and the typical values of the ellipticity of the diffracted beams are reported.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EOLP,OCP=(eiKx+ieiKy2eiKxieiKy2),(sin(Ky)+isin(Kx)2cos(Ky)+icos(Kx)2),
Δn=[βsS0+βlinS1βlinS2+iβcirS3βlinS2iβcirS3βsS0βlinS1],
S0OLP,OCP=1,1,S1OLP,OCP=sin(KxKy),cos(2Kx)+cos(2Ky)2,S2OLP,OCP=cos(2Kx)+cos(2Ky)2,sin(2Kx)+sin(2Ky)2,S3OLP,OCP=sin(2Kx)+sin(2Ky)2,sin(KxKy).

Metrics