Abstract

This investigation presents a simple, widely tunable, and ultrasensitive sensor that is based on a leaky-guided multimode fiber interferometer (MMFI) operated under refractive-index-matched coupling. By use of a material with an appropriate dispersion profile around the MMFI as a cladding yields strong index-matched coupling, which performs ultrasensitive sensing in variations of the surroundings. Index matching at a single wavelength yields a coupling wavelength dip with a narrow bandwidth and a high extinction ratio of over 25 dB. The wavelength dip can also be effectively tuned, greatly shifting with a variation in temperature (T) or refractive index (RI), when the index-matched condition is satisfied. This work demonstrates that the proposed sensor responds sensitively to T with an extremely high tuning efficiency of 50nm/°C and an excellent sensitivity to RI of 113,500 nm per RI unit.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  2. J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012011 (2011).
    [CrossRef]
  3. Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
    [CrossRef]
  4. A. Mehta, W. Mohammed, and E. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
    [CrossRef]
  5. V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012025 (2011).
    [CrossRef]
  6. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, Opt. Lett. 36, 3425 (2011).
    [CrossRef]
  7. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. LiKamWa, Opt. Lett. 35, 324 (2010).
    [CrossRef]
  8. W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 31, 2547 (2006).
    [CrossRef]
  9. S. Shaklan, F. Reynaud, and C. Froehly, Appl. Opt. 31, 749 (1992).
    [CrossRef]
  10. A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, Opt. Express 18, 591 (2010).
    [CrossRef]
  11. W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
    [CrossRef]
  12. D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
    [CrossRef]
  13. C.-L. Lee, Z.-Y. Weng, C.-J. Lin, and Y.-Y. Lin, Opt. Lett. 35, 4172 (2010).
    [CrossRef]

2011

V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012025 (2011).
[CrossRef]

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, Opt. Lett. 36, 3425 (2011).
[CrossRef]

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012011 (2011).
[CrossRef]

2010

2006

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 31, 2547 (2006).
[CrossRef]

Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
[CrossRef]

2004

2003

A. Mehta, W. Mohammed, and E. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

1999

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

1992

Aguilar-Soto, J. G.

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012011 (2011).
[CrossRef]

Antonio-Lopez, J. E.

Basurto-Pensado, M. A.

V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012025 (2011).
[CrossRef]

Castillo-Guzman, A.

Erdogan, T.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Estudillo-Ayala, J.

Froehly, C.

Gu, X.

Johnson, E.

A. Mehta, W. Mohammed, and E. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Johnson, E. G.

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
[CrossRef]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
[CrossRef]

Lee, C.-L.

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
[CrossRef]

LiKamWa, P.

Lin, C.-J.

Lin, Y.-Y.

May-Arrioja, D. A.

Mehta, A.

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

A. Mehta, W. Mohammed, and E. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Mohammed, W.

A. Mehta, W. Mohammed, and E. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Mohammed, W. S.

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Reynaud, F.

Ruiz-Pérez, V. I.

V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012025 (2011).
[CrossRef]

Sanchez-Mondragon, J. J.

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, Opt. Lett. 36, 3425 (2011).
[CrossRef]

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012011 (2011).
[CrossRef]

Sánchez-Mondragón, J. J.

V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012025 (2011).
[CrossRef]

Selvas-Aguilar, R.

Shaklan, S.

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Stegall, D. B.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Weng, Z.-Y.

Appl. Opt.

IEEE Photon. Technol. Lett.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

A. Mehta, W. Mohammed, and E. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

J. Phys. Conf. Ser.

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012011 (2011).
[CrossRef]

V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, J. Phys. Conf. Ser. 274, 012025 (2011).
[CrossRef]

Meas. Sci. Technol.

Y. Jung, S. Kim, D. Lee, and K. Oh, Meas. Sci. Technol. 17, 1129 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Proposed MMFI under incident broadband light with (a) λ1, weakly guided (nNCF>ns); (b) λ2, index-matched (nNCF=ns); and (c) λ3, leaky-guided (nNCF<ns) conditions.

Fig. 2.
Fig. 2.

Refractive index dispersion profiles of silica NCF (nNCF) and surrounding claddings (ns). Insets show FDBPM-simulated intensities of light that propagates along the z axis inside the proposed MMFI under (a) the weakly guided condition with nNCF>ns, λ=1250nm, (b) the index-matched condition with nNCF=ns, λp=1440nm, and (c) the leaky-guided condition with nNCF<ns at λ=1650nm.

Fig. 3.
Fig. 3.

Shift of λp with varying T for the proposed MMFI with L=1.0cm.

Fig. 4.
Fig. 4.

Shift of λp with varying T for the proposed MMFI with L=3.6cm.

Fig. 5.
Fig. 5.

Temperature sensitivities and tuning efficiencies of MMFI sensors with L=1.0cm and 3.6cm.

Fig. 6.
Fig. 6.

(a) RI dispersion profiles of nNCF and claddings with different Cargille index-matched oils, and (b) spectral responses of proposed 1 cm MMFIs with ns of nD=1.456, 1.454, and 1.452 at fixed 25°C.

Metrics