Abstract

A method for long variable all-optical delay is proposed and simulated, based on reflections from localized and stationary dynamic Brillouin gratings (DBGs). Inspired by radar methods, the DBGs are inscribed by two pumps that are comodulated by perfect Golomb codes, which reduce the off-peak reflectivity. Compared with random bit sequence coding, Golomb codes improve the optical signal-to-noise ratio (OSNR) of delayed waveforms by an order of magnitude. Simulations suggest a delay of 5Gb/s data by 9 ns, or 45 bit durations, with an OSNR of 13 dB.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 33, 926 (2008).
    [CrossRef]
  3. Y. Dong, X. Bao, and L. Chen, Opt. Lett. 34, 2590 (2009).
    [CrossRef]
  4. W. Zou, Z. He, and K. Hotate, Opt. Express 17, 1248 (2009).
    [CrossRef]
  5. S. Chin, N. Primerov, and L. Thevenaz, IEEE Sens. J. 12, 189 (2012).
    [CrossRef]
  6. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thevenaz, Opt. Express 20, 6157 (2012).
    [CrossRef]
  7. S. Chin, N. Primerov, and L. Thevenaz, Proceedings of 36th European Conference on Optical Communication (IEEE, 2010).
  8. W. Zou, Z. He, K. Y. Song, and K. Hotate, Opt. Lett. 34, 1126 (2009).
    [CrossRef]
  9. K. Y. Song, K. Lee, and S. B. Lee, Opt. Express 17, 10344 (2009).
    [CrossRef]
  10. D.-P. Zhou, Y. Dong, L. Chen, and X. Bao, Opt. Express 19, 20785 (2011).
    [CrossRef]
  11. K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
    [CrossRef]
  12. M. Santagiustina and L. Ursini, Opt. Lett. 37, 893 (2012).
    [CrossRef]
  13. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, Opt. Express 20, 7807 (2012).
    [CrossRef]
  14. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, Laser Photon. Rev. 6, L1 (2012).
    [CrossRef]
  15. S. W. Golomb, IEEE Trans. Aerosp. Electron. Syst. 28, 383 (1992).
    [CrossRef]
  16. A. Zadok, A. Eyal, and M. Tur, Appl. Opt. 50, E38 (2011).
    [CrossRef]

2012 (5)

2011 (2)

2009 (4)

2008 (1)

2002 (1)

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

1992 (1)

S. W. Golomb, IEEE Trans. Aerosp. Electron. Syst. 28, 383 (1992).
[CrossRef]

Antman, Y.

Bao, X.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Chen, L.

Chin, S.

S. Chin, N. Primerov, and L. Thevenaz, IEEE Sens. J. 12, 189 (2012).
[CrossRef]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thevenaz, Opt. Express 20, 6157 (2012).
[CrossRef]

S. Chin, N. Primerov, and L. Thevenaz, Proceedings of 36th European Conference on Optical Communication (IEEE, 2010).

Denisov, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, Laser Photon. Rev. 6, L1 (2012).
[CrossRef]

Dong, Y.

Eyal, A.

Golomb, S. W.

S. W. Golomb, IEEE Trans. Aerosp. Electron. Syst. 28, 383 (1992).
[CrossRef]

He, Z.

Hotate, K.

Lee, K.

Lee, S. B.

Primerov, N.

S. Chin, N. Primerov, and L. Thevenaz, IEEE Sens. J. 12, 189 (2012).
[CrossRef]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, Laser Photon. Rev. 6, L1 (2012).
[CrossRef]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thevenaz, Opt. Express 20, 6157 (2012).
[CrossRef]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, Opt. Express 20, 7807 (2012).
[CrossRef]

S. Chin, N. Primerov, and L. Thevenaz, Proceedings of 36th European Conference on Optical Communication (IEEE, 2010).

Sales, S.

Sancho, J.

Santagiustina, M.

Song, K. Y.

Tanaka, M.

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

Thevenaz, L.

S. Chin, N. Primerov, and L. Thevenaz, IEEE Sens. J. 12, 189 (2012).
[CrossRef]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, Laser Photon. Rev. 6, L1 (2012).
[CrossRef]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, Opt. Express 20, 7807 (2012).
[CrossRef]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thevenaz, Opt. Express 20, 6157 (2012).
[CrossRef]

S. Chin, N. Primerov, and L. Thevenaz, Proceedings of 36th European Conference on Optical Communication (IEEE, 2010).

Tur, M.

Ursini, L.

Zadok, A.

Zhou, D.-P.

Zou, W.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

IEEE Sens. J. (1)

S. Chin, N. Primerov, and L. Thevenaz, IEEE Sens. J. 12, 189 (2012).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

S. W. Golomb, IEEE Trans. Aerosp. Electron. Syst. 28, 383 (1992).
[CrossRef]

Laser Photon. Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, Laser Photon. Rev. 6, L1 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Other (2)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

S. Chin, N. Primerov, and L. Thevenaz, Proceedings of 36th European Conference on Optical Communication (IEEE, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Top: simulated acoustic field magnitude |Q(t,z)| for DBGs written by PRBS coded pumps (left), and by pumps modulated with a perfect Golomb code (N=63, right). The coding symbol duration was 100 ps in both simulations. Bottom: simulated |Q(t=10τ,z)|2 for PRBS (red) and Golomb (blue) pumps coding.

Fig. 2.
Fig. 2.

Simulated eye diagrams of 5Gb/s PSK data streams, delayed by DBGs induced along a 90 cm long PM fiber. Top: PRBS-coded pumps. Bottom: pumps modulated by a perfect Golomb code (N=63). The coding symbol duration was 100 ps in both simulations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E1,2(t,z)=A1,2(t,z)exp(jω1,2t)+c.c.
A1(t,0)=A2(t,L)=A0{ncnrect[(tnT)/T]}A(t).
Q(t,z)=jg10texp[(tt)/2τ]×A(tz/vg)A*[tz/vgθ(z)]dt,
Q(t,z)jg1|A0|2Tn=n0(t,z)1exp[(nn0)T2τ]cncnlz*=jg1|A0|2TR˜N0(lz).
R˜N0(lz)n=n0(t,z)1exp[(n0n)/N0]cncnlz*.
OSNR=N02(lz0R˜N0(l))2.
OSNR¯=N02lz0E{[R˜N0(lz)]2}=N02lz012N02τvgL=4τTD.
RN(l)n=n0Nnoananl*

Metrics