Abstract

In a near-production internal combustion engine, the effective fluorescence lifetime of toluene was determined by time-correlated single-photon counting with a minimally invasive fiber-optic spark-plug sensor. The lifetime measurement provided continuous crank-angle-resolved measurements of gas temperature. Proof-of-concept experiments in a motored four-cylinder spark-ignition engine were evaluated with a time resolution of 500 μs, yielding temperature precision of 25 K (standard deviation) at top-dead center. In these experiments, 10% toluene was added to the nonfluorescent base fuel iso-octane. Fluorescence lifetimes were related to temperature via calibration measurements in a high temperature pressure vessel, with the data fitted to a functional dependence derived from a previously published phenomenological model.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE Paper 2007-01-0644 (2007).
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  3. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
    [CrossRef]
  4. R. Devillers, G. Bruneaux, and C. Schulz, Appl. Phys. B 96, 735 (2009).
    [CrossRef]
  5. S. Faust, T. Dreier, and C. Schulz, Chem. Phys. 383, 6 (2011).
    [CrossRef]
  6. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  7. S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
    [CrossRef]
  8. W. Koban and C. Schulz, SAE Tech. Paper Ser. 01, 2091 (2005).
    [CrossRef]
  9. F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
    [CrossRef]
  10. R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
    [CrossRef]

2011 (1)

S. Faust, T. Dreier, and C. Schulz, Chem. Phys. 383, 6 (2011).
[CrossRef]

2009 (1)

R. Devillers, G. Bruneaux, and C. Schulz, Appl. Phys. B 96, 735 (2009).
[CrossRef]

2006 (1)

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

2005 (2)

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

W. Koban and C. Schulz, SAE Tech. Paper Ser. 01, 2091 (2005).
[CrossRef]

2004 (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
[CrossRef]

1998 (1)

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
[CrossRef]

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

Beushausen, V.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE Paper 2007-01-0644 (2007).

Bruneaux, G.

R. Devillers, G. Bruneaux, and C. Schulz, Appl. Phys. B 96, 735 (2009).
[CrossRef]

Devillers, R.

R. Devillers, G. Bruneaux, and C. Schulz, Appl. Phys. B 96, 735 (2009).
[CrossRef]

Dreier, T.

S. Faust, T. Dreier, and C. Schulz, Chem. Phys. 383, 6 (2011).
[CrossRef]

Faust, S.

S. Faust, T. Dreier, and C. Schulz, Chem. Phys. 383, 6 (2011).
[CrossRef]

Grosch, A.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE Paper 2007-01-0644 (2007).

Grzeszik, R.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE Paper 2007-01-0644 (2007).

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
[CrossRef]

Herten, D.

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

King, G. B.

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
[CrossRef]

Koban, W.

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

W. Koban and C. Schulz, SAE Tech. Paper Ser. 01, 2091 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Laurendeau, N. M.

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
[CrossRef]

Osten, W.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

Pack, S. D.

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
[CrossRef]

Pruss, C.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

Reichle, R.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

Renfro, M. W.

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
[CrossRef]

Roth, C. M.

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

Schulz, C.

S. Faust, T. Dreier, and C. Schulz, Chem. Phys. 383, 6 (2011).
[CrossRef]

R. Devillers, G. Bruneaux, and C. Schulz, Appl. Phys. B 96, 735 (2009).
[CrossRef]

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

W. Koban and C. Schulz, SAE Tech. Paper Ser. 01, 2091 (2005).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
[CrossRef]

Thiele, O.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE Paper 2007-01-0644 (2007).

Tiziani, H. J.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

Zimmermann, F. P.

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

Zimmermann, P. F.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

Appl. Phys. B (1)

R. Devillers, G. Bruneaux, and C. Schulz, Appl. Phys. B 96, 735 (2009).
[CrossRef]

Chem. Phys. (1)

S. Faust, T. Dreier, and C. Schulz, Chem. Phys. 383, 6 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

F. P. Zimmermann, W. Koban, C. M. Roth, D. Herten, and C. Schulz, Chem. Phys. Lett. 426, 248 (2006).
[CrossRef]

Combust. Sci. Technol. (1)

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 140, 405 (1998).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004).
[CrossRef]

Proc. SPIE (1)

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, P. F. Zimmermann, and C. Schulz, Proc. SPIE 5856, 158 (2005).
[CrossRef]

SAE Tech. Paper Ser. (1)

W. Koban and C. Schulz, SAE Tech. Paper Ser. 01, 2091 (2005).
[CrossRef]

Other (3)

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE Paper 2007-01-0644 (2007).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Effective fluorescence lifetimes of toluene in air after laser excitation at 266 nm as a function of temperature and total pressure. Symbols: experimental data from [5]; grid surface: best fit using Eq. (3).

Fig. 2.
Fig. 2.

Experimental arrangement: spark plug sensor mounted in the cylinder head, fiber excitation and fiber detection, detector with associated TCSPC electronics.

Fig. 3.
Fig. 3.

Top: relative photon arrival times for three selected crank angles for a collection interval of 1ms=3.6 CAD. Center: fluorescence life times (red); count rate CR (black); and cylinder pressure over a single engine cycle (blue). Bottom: corresponding temperature from TCSPC (black); temperature calculated from the measured pressure trace (red); and intake air temperature (blue). The crank-angle convention used in this Letter assigns zero CAD to compression TDC, i.e., CAD during compression are negative.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ[O2]=0=γ0+Aexp(TT0)
τeff=1kq[O2]+τ[O2]=01,
τeff=1kqcpT+(γ0+Aexp(T/T0))1.

Metrics